• Title/Summary/Keyword: secure aggregation

Search Result 33, Processing Time 0.023 seconds

Secure and Fine-grained Electricity Consumption Aggregation Scheme for Smart Grid

  • Shen, Gang;Su, Yixin;Zhang, Danhong;Zhang, Huajun;Xiong, Binyu;Zhang, Mingwu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1553-1571
    • /
    • 2018
  • Currently, many of schemes for smart grid data aggregation are based on a one-level gateway (GW) topology. Since the data aggregation granularity in this topology is too single, the control center (CC) is unable to obtain more fine-grained data aggregation results for better monitoring smart grid. To improve this issue, Shen et al. propose an efficient privacy-preserving cube-data aggregation scheme in which the system model consists of two-level GW. However, a risk exists in their scheme that attacker could forge the signature by using leaked signing keys. In this paper, we propose a secure and fine-grained electricity consumption aggregation scheme for smart grid, which employs the homomorphic encryption to implement privacy-preserving aggregation of users' electricity consumption in the two-level GW smart grid. In our scheme, CC can achieve a flexible electricity regulation by obtaining data aggregation results of various granularities. In addition, our scheme uses the forward-secure signature with backward-secure detection (FSBD) technique to ensure the forward-backward secrecy of the signing keys. Security analysis and experimental results demonstrate that the proposed scheme can achieve forward-backward security of user's electricity consumption signature. Compared with related schemes, our scheme is more secure and efficient.

A Design of MAC based SDAP(Secure Data Aggregation Protocol) for security and communication efficiency on VANET (VANET에서 보안과 통신효율을 고려한 MAC기반 SDAP(Secure Data Aggregation Protocol) 설계)

  • Lee, Byung-kwan;Ahn, Heui-hak;Jeong, Eun-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.650-652
    • /
    • 2013
  • As VANET(Vehicular Ad-hoc NETwork) improves road safety, efficiency, and comfort, and provides a value-added service such as commerce information or internet access. it is the most important technology in ITS(Intelligent Transportation System). But, In VANETs, better communication efficiency can be achieved by sacrificing security and vice versa. VANETs cannot get started without either of them. Therefore, to solve these problems simultaneously, this paper proposes MAC(Message Authentication Code) based SDAP(Secure Data Aggregation Protocol) which removes redundant data or abnormal data between vehicles and verifies the integrity of message. The MAC based SDAP not only improves the efficiency of data delivery but also enhances the security by detecting malicious attacks such as propagation jamming attack, forgery attack, and disguised attack.

  • PDF

Monitoring-Based Secure Data Aggregation Protocol against a Compromised Aggregator in Wireless Sensor Networks (무선 센서 네트워크에서 Compromised Aggregator에 대응을 위한 모니터링 기반 시큐어 데이터 병합 프로토콜)

  • Anuparp, Boonsongsrikul;Lhee, Kyung-Suk;Park, Seung-Kyu
    • The KIPS Transactions:PartC
    • /
    • v.18C no.5
    • /
    • pp.303-316
    • /
    • 2011
  • Data aggregation is important in wireless sensor networks. However, it also introduces many security problems, one of which is that a compromised node may inject false data or drop a message during data aggregation. Most existing solutions rely on encryption, which however requires high computation and communication cost. But they can only detect the occurrence of an attack without finding the attacking node. This makes sensor nodes waste their energy in sending false data if attacks occur repeatedly. Even an existing work can identify the location of a false data injection attack but it has a limitation that at most 50% of total sensor nodes can participate in data transmission. Therefore, a novel approach is required such that it can identify an attacker and also increase the number of nodes which participate in data transmission. In this paper, we propose a monitoring-based secure data aggregation protocol to prevent against a compromised aggregator which injects false data or drops a message. The proposed protocol consists of aggregation tree construction and secure data aggregation. In secure data aggregation, we use integration of abnormal data detection with monitoring and a minimal cryptographic technique. The simulation results show the proposed protocol increases the number of participating nodes in data transmission to 95% of the total nodes. The proposed protocol also can identify the location of a compromised node which injects false data or drops a message. A communication overhead for tracing back a location of a compromised node is O(n) where n is the total number of nodes and the cost is the same or better than other existing solutions.

Homomorphic Cryptoschemes based Secure Data Aggregation for Wireless Sensor Networks (무선 센서 네트워크를 위한 준동형 암호체계 기반의 안전한 데이터 병합 기법)

  • Yulia, Ponomarchuk;Nam, Young-Jin;Seo, Dae-Wha
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.2
    • /
    • pp.108-117
    • /
    • 2009
  • Data aggregation is one of the well-known techniques to reduce the energy consumption for information transmission over wireless sensor networks (WSN). As the WSNs are deployed in untrusted or even hostile environments, the data aggregation becomes problematic when end-to-end data privacy including data confidentiality and integrity between sensor nodes and base station, is required. Meanwhile, data homomorphic cryptoschemes have been investigated recently and recommended to provide the end-to-end privacy in the hostile environments. In order to assure both data confidentiality and integrity for data aggregation, this paper analyzes the existing homomorphic cryptoschemes and digital signature schemes, proposes possible combinations, and evaluates their performance in terms of CPU overheads and communication costs.

A Sextant Cluster Based Monitoring on Secure Data Aggregation and Filtering False Data in Wireless Sensor Networks (무선센서 네트워크에서의 육분원 방식 모니터링 기반 안전한 데이터 병합 및 위조 데이터 필터링)

  • Boonsongsrikul, Anuparp;Park, Seung-Kyu;Shin, Seung-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • Local monitoring is an effective technique in securing data of wireless sensor networks. Existing solutions require high communication cost for detecting false data and this results in a network lifetime being shortened. This paper proposes novel techniques of monitoring based secure data aggregation and filtering false data in wireless sensor networks. The aim is to reduce energy consumption in securing data aggregation. An aggregator and its monitoring node perform data aggregation in a 60o sextant cluster. By checking Message Authentication Codes (MAC), aggregation data will be dropped by a forward aggregator if data aggregated by the aggregator and data monitored by the monitoring node are inconsistent. The simulation shows that the proposed protocol can reduce the amount of average energy consumption about 64% when comparing with the Data Aggregation and Authentication protocol (DAA)[1]. Additionally, the network lifetime of the proposed protocol is 283% longer than that of DAA without any decline in data integrity.

Secure and Scalable Key Aggregation Scheme for Cloud Storage

  • Park, YoHan;Park, YoungHo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.11-18
    • /
    • 2015
  • As the communication technology and mobile devices develop, the need for the efficient and secure remote storage is required. And recently, many companies support cloud storages to meet the requirements of the customers. Especially in the business field where various companies collaborate, data sharing is an essential functionality to enhance their work performance. However, existing researches have not fully satisfied the requirement either efficiency and security. This paper suggests efficient and secure data sharing scheme for cloud storage by using secret sharing scheme. Proposed scheme can be applied to business collaborations and team projects.

Implementation of Secure System for Blockchain-based Smart Meter Aggregation (블록체인 기반 스마트 미터 집계 보안 시스템 구축)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • As an important basic building block of the smart grid environment, smart meter provides real-time electricity consumption information to the utility. However, ensuring information security and privacy in the smart meter data aggregation process is a non-trivial task. Even though the secure data aggregation for the smart meter has been a lot of attention from both academic and industry researchers in recent years, most of these studies are not secure against internal attackers or cannot provide data integrity. Besides, their computation costs are not satisfactory because the bilinear pairing operation or the hash-to-point operation is performed at the smart meter system. Recently, blockchains or distributed ledgers are an emerging technology that has drawn considerable interest from energy supply firms, startups, technology developers, financial institutions, national governments and the academic community. In particular, blockchains are identified as having the potential to bring significant benefits and innovation for the electricity consumption network. This study suggests a distributed, privacy-preserving, and simple secure smart meter data aggregation system, backed up by Blockchain technology. Smart meter data are aggregated and verified by a hierarchical Merkle tree, in which the consensus protocol is supported by the practical Byzantine fault tolerance algorithm.

Provably Secure Aggregate Signcryption Scheme

  • Ren, Xun-Yi;Qi, Zheng-Hua;Geng, Yang
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.421-428
    • /
    • 2012
  • An aggregate signature scheme is a digital signature scheme that allows aggregation of n distinct signatures by n distinct users on n distinct messages. In this paper, we present an aggregate signcryption scheme (ASC) that is useful for reducing the size of certification chains (by aggregating all signatures in the chain) and for reducing message size in secure routing protocols. The new ASC scheme combines identity-based encryption and the aggregation of signatures in a practical way that can simultaneously satisfy the security requirements for confidentiality and authentication. We formally prove the security of the new scheme in a random oracle model with respect to security properties IND-CCA2, AUTH-CMA2, and EUF-CMA.

Ruzicka Indexed Regressive Homomorphic Ephemeral Key Benaloh Cryptography for Secure Data Aggregation in WSN

  • Saravanakumar Pichumani;T. V. P. Sundararajan;Rajesh Kumar Dhanaraj;Yunyoung Nam;Seifedine Kadry
    • Journal of Internet Technology
    • /
    • v.22 no.6
    • /
    • pp.1287-1297
    • /
    • 2021
  • Data aggregation is the significant process in which the information is gathered and combines data to decrease the amount of data transmission in the WSN. The sensor devices are susceptible to node attacks and security issues such as data confidentiality and data privacy are extremely important. A novel technique called Ruzicka Index Regressive Homomorphic Ephemeral Key Benaloh Cryptography (RIRHEKBC) technique is introduced for enhancing the security of data aggregation and data privacy in WSN. By applying the Ruzicka Index Regressive Homomorphic Ephemeral Key Benaloh Cryptography, Ephemeral private and public keys are generated for each sensor node in the network. After the key generation, the sender node performs the encryption using the receiver public key and sends it to the data aggregator. After receiving the encrypted data, the receiver node uses the private key for decrypting the ciphertext. The key matching is performed during the data decryption using Ruzicka Indexive regression function. Once the key is matched, then the receiver collects the original data with higher security. The simulation result proves that the proposed RIRHEKBC technique increases the security of data aggregation and minimizes the packet drop, and delay than the state-of-the- art methods.

Noisy Weighted Data Aggregation for Smart Meter Privacy System (스마트 미터 프라이버시 시스템을 위한 잡음 가중치 데이터 집계)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.49-59
    • /
    • 2018
  • Smart grid system has been deployed fast despite of legal, business and technology problems in many countries. One important problem in deploying the smart grid system is to protect private smart meter readings from the unbelievable parties while the major smart meter functions are untouched. Privacy-preserving involves some challenges such as hardware limitations, secure cryptographic schemes and secure signal processing. In this paper, we focused particularly on the smart meter reading aggregation,which is the major research field in the smart meter privacy-preserving. We suggest a noisy weighted aggregation scheme to guarantee differential privacy. The noisy weighted values are generated in such a way that their product is one and are used for making the veiled measurements. In case that a Diffie-Hellman generator is applied to obtain the noisy weighted values, the noisy values are transformed in such a way that their sum is zero. The advantage of Diffie and Hellman group is usually to use 512 bits. Thus, compared to Paillier cryptosystem series which relies on very large key sizes, a significant performance can be obtained.