• 제목/요약/키워드: sections

검색결과 6,545건 처리시간 0.035초

물량저감 철근상세를 갖는 중공 철근콘크리트 교각단면의 개발 (Development of Hollow Reinforced Concrete Bridge Column Sections with Reinforcement Details for Material Quantity Reduction)

  • 김태훈;이재훈;신현목
    • 한국지진공학회논문집
    • /
    • 제17권3호
    • /
    • pp.107-115
    • /
    • 2013
  • The purpose of this study was to investigate the performance of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction. The proposed reinforcement details has have economic feasibility and rationality and makes construction periods shorter. A model of column sections with reinforcement details for material quantity reduction was tested under quasistatic monotonic loading. As a result, the proposed reinforcement details for material quantity reduction was were equal to existing reinforcement details in terms of the required performance. In the a subsequent paper, the an experimental and analytical study will be performed for the performance assessment of hollow reinforced concrete bridge column sections with reinforcement details for material quantity reduction will be performed.

횡구속 콘크리트의 압축 응력-변형률 모델 : Part II. 사각단면 부재 (Stress-Strain Model for Laterally Confined Concrete : Part II. Rectangular Sectional Members)

  • 선창호;정혁창;김익현
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.59-67
    • /
    • 2017
  • Due to a lack of the hoop action of lateral reinforcements the effective confining force in rectangular sections reduces compared to circular ones. Therefore, the stress-strain model obtained from the experimental data with circular sections overestimates the lateral confinement effect in rectangular sections, which evaluates seismic safety margin of overall structural system excessively. In this study experiments with laterally-confined square sections have been performed and the characteristic values composing stress-strain model have been analyzed. With introduction of section coefficients, in addition, the new unified stress-strain model applicable to square sections as well as circular ones has been proposed.

열차거리에 따른 절연구간 무접전 자동 통과시스템의 검토 (Investigation of Automatic Power Switching System in Dead Section Depending on Train Mileage)

  • 김강회;한문섭;장동욱;창상훈;이재호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1878-1884
    • /
    • 2010
  • Currently in Korea, neutral sections in front of substations and sectioning posts are greatly divided into AC/DC sections and AC/AC sections. Considering catenary damage and safety issues trains pass crossover by coasting driving at notch-off. However in cases of Japan, China, or Taiwan, the usage of automatic crossover system makes it possible to pass at notch-on, enhancing high-speed railway operation for efficiency, and stability. These are the purposes of developing automatic power crossover system in neutral sections. This paper introduces two methods to detect the position of a train required to activate automatic crossover systems in neutral sections. The optimal method is expected in terms of the distance of neutral section.

  • PDF

건축공사 공종별 기후요소 영향도 분석 (An Analysis of the Effect of Weather Condition with Work Sections in Building Construction)

  • 김백중;서장우;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.141-144
    • /
    • 2006
  • The building construction is an essential field to consider weather condition because construction works are performed in a site. From this reason, this study evaluated the effect of weather condition with work sections in building construction by Analytic Hierarchy Proces (AHP) method. The results of this study as follows : (1) The effect of weather condition with work sections is affected by rainfall in summer season, and by a low temperature in winter season (2) The effect of weather condition with work sections is 0.235 for mold work, 0.210 for concrete work, 0.181 for steel-frame work.

  • PDF

연속보 주부재의 조밀 및 비조밀 단면 최적화 설계 (Optimal Design of Continuous Girders Considering Compact and Non-compact Cross-sections)

  • 국중식;신영석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.143-150
    • /
    • 1999
  • The LRFD Specification defines two sets of limiting width-to-thickness ratios. On the basis of these limiting values, steel sections we subdivided into three categories: compact, noncompact, and slender sections. A compact section is capable of developing a fully plastic stress distribution (plastic moment), and can sustain rotations approximately three times beyond the yield before the possibility of local buckling arises. Noncompact sections can develop the yield stress before local buckling occurs. They may not, however, resist local buckling at the strain levels required to develop the fully plastic stress distribution. In this paper, 1-Type girders of a 2 span continuous steel bridge are divided into compact and non-compact sections and analyzed. In the design process, an optimization skill was adopted and ADS, a Fortran program for Automated Design Synthesis, was used.

  • PDF

Closed form interaction surfaces for nonlinear design codes of RC columns with MC 90

  • Barros, M.H.F.M.;Ferreira, C.C.;Barros, A.F.M.
    • Computers and Concrete
    • /
    • 제2권1호
    • /
    • pp.55-77
    • /
    • 2005
  • The closed form solution of the equilibrium equations in the ultimate design of reinforced concrete sections under biaxial bending is presented. The stresses in the materials are described by the Model Code 1990 equations. Computation of the integral equations is performed generally in terms of all variables. The deformed shape of the section in the ultimate conditions is defined by Heaviside functions. The procedure is convenient for the use of mathematical manipulation programs and the results are easily included into nonlinear analysis codes. The equations developed for rectangular sections can be applied for other sections, such as T, L, I for instance, by decomposition into rectangles. Numerical examples of the developed model for rectangular sections and composed sections are included.

Ultimate moment capacity of foamed and lightweight aggregate concrete-filled steel tubes

  • Assi, Issam M.;Qudeimat, Eyad M.;Hunaiti, Yasser M.
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.199-212
    • /
    • 2003
  • An experimental investigation of lightweight aggregate and foamed concrete contribution to the ultimate strength capacity of square and rectangular steel tube sections is presented in this study. Thirty-four simply supported beam specimens, 1000-mm long, filled with lightweight aggregate and foamed concretes were tested in pure flexural bending to calculate the ultimate moment capacity. Normal concrete-filled steel tubular and bare steel sections of identical dimensions were also tested and compared to the filled steel sections. Theoretical values of ultimate moment capacity of the beam specimens were also calculated in this study for comparison purposes. The test results showed that lightweight aggregate and foamed concrete significantly enhance the load carrying capacity of steel tubular sections. Furthermore, it can be concluded from this study that lightweight aggregate and foamed concretes can be used in composite construction to increase the flexural capacity of the steel tubular sections.

Experimental investigation of residual stresses in cold formed steel sections

  • Besevic, Miroslav
    • Steel and Composite Structures
    • /
    • 제12권6호
    • /
    • pp.465-489
    • /
    • 2012
  • Residual stresses play important role for design of steel structural members. Cold formed sections usually have residual stresses caused by roll forming. When compared to stresses caused by the working load, especially for compressed members, the effects of residual stresses can be favorable or unfavorable depending on magnitude, orientation and distribution of these stresses. The research presented in this paper includes experimental investigations of residual stresses, initial imperfections and material properties on cold formed carbon steel open cross sections. Experimental results have been compared to results obtained in similar tests with stainless and high strength steel cross sections. Theoretical and experimental research, conducted for cold formed open cross sections, are important for design of axially compressed members. This paper presents two methods of residual stresses investigation: magnetic method and method of pre-drilled holes and obtained results have been compared with results of residual stresses from other authors.

Added Mass Estimation of Square Sections Coupled with a Liquid Using Finite Element Method

  • Jeong, Kyeong Hoon;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.234-244
    • /
    • 2017
  • Natural frequencies of immersed square sections decrease due to a contribution of added mass to the movement of square sections. In this study, natural frequencies of square sections are obtained as a function of gap size between the square section and a rigid square wall using the finite element method. Additionally, they are used to extract the added mass effect on translational and rotation motions. Published information and studies on the translational and torsional vibration of square beams are also examined for practical use. D coupling of a square section is also investigated for multiple square sections. The suggested added mass estimation can be applicable to the spent fuel storage design of a pressurized light water modulated nuclear power plant.

장주기파에 효율적인 부유식방파제에 대한 연구 I: 사다리꼴과 요철 단면형상에 대하여 (A Study on the Long-Wave Effective Floating Breakwater I: On Trapezoid and Prominence Cross Section)

  • 김도영;안용호
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.7-11
    • /
    • 2001
  • In this paper, trapezoid sections and prominence sections were examined to improve the performance of floating breakwater in long waves. The linear potential theory is used and the boundary element method with a matching boundary is employed for numerical computation. The effects of the side slope of the trapezoid section and the geometry ratio of the prominence section on the floating breakwater were examined. It was found that trapezoid sections show lower transmission coefficients than the rectangular sections in the long wave range. In prominence sections the size of the sides are more important than the size of the top. Proper choices of the pontoon type geometry may move the local minimum point of the wave transmission coefficient toward the longer wave ranges and improve the performance of the floating breakwater in the long wave range for a given wave period.

  • PDF