• Title/Summary/Keyword: secondary shoot growth

Search Result 34, Processing Time 0.027 seconds

Growth, Protein and Pigment Content of Rice Seedlings under Phosphorus Deprivation Condition

  • Yun, Song-Joong;Park, Myoung-Ryul;Kim, Young-Doo;Kim, Key-Young;Baek, So-Hyeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.2
    • /
    • pp.103-107
    • /
    • 2003
  • Phosphorus (P) is a macronutrient playing important roles in many plant processes. Significant interest has been devoted to search and utilize genotypic variations in P use efficiency in rice but with little effort to understand its physiological and biochemical bases. In this study, we examined responses to P deprivation of some primary and secondary traits in 3-week-old seedlings of the three genotypes, Sobi-byeo (japonica), Dasan-byeo (japonica $\times$ indica) and Palawan (indica). In general, percent weight due to root was increased up to 26%, but amounts of root protein and proteins secreted from roots were decreased by 11 to 19% and 31 to 51 %, respectively, by 3 to 21 days of P deprivation in the three genotypes. Interestingly, however, responses of Palawan to short-term P deprivation were contrasting to those of Dasan-byeo and Sobi-byeo in seedling weight and contents of shoot protein, chlorophyll and anthocyanin. Seedling weight was not decreased, but shoot protein content was decreased in P-deprived seedlings of Palawan. Contents of chlorophyll in leaves and anthocynin in roots were increased in Dasan-byeo and Sobi-byeo, but decreased in Palawan. The results suggest that responses of protein and pigment synthesis to P deficiency are different in modem and traditional varieties and the difference may at least in part be due to the selection for high yield under highly fertilized conditions.

Current Perspectives on the Effects of Plant Growth-promoting Rhizobacteria (식물생장촉진 근권미생물의 영향에 대한 연구 현황 및 전망)

  • Le, Thien Tu Huynh;Jun, Sang Eun;Kim, Gyung-Tae
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1281-1293
    • /
    • 2019
  • The rhizosphere is the active zone where plant roots communicate with the soil microbiome, each responding to the other's signals. The soil microbiome within the rhizosphere that is beneficial to plant growth and productivity is known as plant growth-promoting rhizobacteria (PGPR). PGPR take part in many pivotal plant processes, including plant growth, development, immunity, and productivity, by influencing acquisition and utilization of nutrient molecules, regulation of phytohormone biosynthesis, signaling, and response, and resistance to biotic- and abiotic-stresses. PGPR also produce secondary compounds and volatile organic compounds (VOCs) that elicit plant growth. Moreover, plant roots exude attractants that cause PGPR to aggregate in the rhizosphere zone for colonization, improving soil properties and protecting plants against pathogenic factors. The interactions between PGPR and plant roots in rhizosphere are essential and interdependent. Many studies have reported that PGPR function in multiple ways under the same or diverse conditions, directly and indirectly. This review focuses on the roles and strategies of PGPR in enhancing nutrient acquisition by nutrient fixation/solubilization/mineralization, inducing plant growth regulators/phytohormones, and promoting growth and development of root and shoot by affecting cell division, elongation, and differentiation. We also summarize the current knowledge of the effects of PGPR and the soil microbiota on plants.

Isolation of Endophytic Fungi Capable of Plant Growth Promotion from Monocots Inhabited in the Coastal Sand Dunes of Korea (사구에 서식하는 단자엽식물로부터 식물 생장 촉진 활성 내생 진균류의 분리)

  • Khan, Sumera Afzal;Hamayun, Muhammad;Rim, Soon-Ok;Lee, In-Jung;Seu, Jong-Chul;Choo, Yeon-Sik;Jin, Ing-Nyol;Kim, Sang-Dal;Lee, In-Koo;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1355-1359
    • /
    • 2008
  • Endophytic fungi predominantly inhabit grasses, and produce a variety of beneficial metabolites for plant growth, as well as help their hosts against pathogens and herbivores. Current study was focused on plant growth promoting activity of endophytic fungi inhabited in the roots of sand dune grasses. We collected 49 fungal isolates from the roots of four most common sand dune grasses and screened them for their growth promoting capacity. Results showed that 37 fungal isolates (75.5%) promoted plant height and shoot length of waito-c rice, 11 fungal isolates (22.5%) suppressed it, while 1 fungus (2%) showed no effect on the growth attributes. The fungal strain Gibberella fujikuroi, along with distilled water and Czapek broth medium, were taken as control for this experiment. It was concluded that a major proportion of endophytic fungi inhabited in the sand dune plants produce metabolites, and thus help in growth and development of the host plant.

Effect of Plasma-activated Water Process on the Growth and Functional Substance Content of Lettuce during the Cultivation Period in a Deep Flow Technique System (담액수경재배 시스템에서 플라즈마수 처리가 상추의 생육 및 페놀류 함량에 미치는 영향)

  • Noh, Seung Won;Park, Jong Seok;Kim, Sung Jin;Kim, Dae-Woong;Kang, Woo Seok
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.464-472
    • /
    • 2020
  • We suggest a hydroponic cultivation system combined with a plasma generator to investigate the changes in the growth and functional substance content of lettuces during the cultivation period. Lettuce seedlings of uniform size were planted in semi-DFT after seeding for 3 weeks, and the plasma-activated water was intermittently operated for 1 hour at an 8 hours cycle for 4 weeks. Lettuces grew with or without plasma-activated water with the nutrient solution in hydroponics culture systems. Among the reactive oxygen species generated during plasma-activated water treatment, brown spots and necrosis appeared in the individuals closer to the plasma generating device due to O3, and there was no significant difference in the growth parameters. While the rutin and total phenolic content of the lettuce shoot grown in the nutrient solution were higher than that of the plasma-activated water, epicatechin contents in plasma-activated water were significantly greater than the nutrient solution. However, in the roots, all kinds of secondary metabolites measured in this work, rutin, epicatechin, quercetin, and total phenolic contents, were significantly higher in the plasma-activated water than the control. These results were indicated that the growth of lettuce was decreased due to the reactive oxygen species such as ozone in the plasma-activated water, but the secondary metabolites in the root zone increased significantly. It has needed to use this technology for the cultivation of root vegetables with the modified plasma-activated water systems to increase secondary metabolite in the roots.

Photosynthesis and Growth of Southern-type Garlic (Allium sativum L.) in Response to Elevated Temperatures in a Temperature Gradient Tunnel (온도구배터널 내 상승온도에 의한 난지형 마늘(Allium sativum L.)의 광합성 및 생육 특성의 변화)

  • Oh, Seo-Young;Moon, Kyung Hwan;Song, Eun Young;Shin, Minji;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.250-260
    • /
    • 2019
  • This study assessed clove germination, shoot growth, photosynthesis and bulb development of southern-type garlic (Allium sativum L.) in a temperature gradient tunnel (TGT), to examine the impacts of increases in temperature on the growth of garlic and find a way to minimize them. The temperatures in the middle and outlet of the TGT were 3.2℃ and 5.8℃ higher, respectively, than the ambient temperature at the tunnel inlet. The germination of garlic cloves was late at temperatures of ambient+3℃ (in the middle of the TGT) and ambient+6℃ (at the outlet) than at ambient temperature (at the inlet). However, bolting and the timing of maximum leaf number per plant were faster at ambient+3℃ or +6℃ than at ambient temperature. Shoot growth was generally greater at ambient temperature. Bulb growth did not significantly differ according to cultivation temperatures, but fresh and dry weights were slightly higher at ambient temperature and ambient+3℃ in the late growth stage. The photosynthesis rate (A), stomatal conductance (gs), and transpiration rate (E) were higher at ambient+3℃ than at ambient temperature. Furthermore, at ambient+3℃, the net photosynthetic rate (Amax) was high, while the dark respiration rate (Rd) was low. At ambient temperature and ambient+3℃, bulb development was healthier, resulting in better productivity and more commercial bulbs, while at ambient+6℃, the bulbs were small and secondary cloves developed, resulting in low commercial value. Therefore, at elevated temperatures caused by global warming, it is necessary to meet the low-temperature requirements before clove sowing, or to delay the sowing time, to improve germination rate and increase yield. The harvest should also be advanced to escape high-temperature stress in the bulb development stage.

Growth, Development, and Morphological Characteristics of Echinochloa colona (Echinochloa colona의 생장(生長), 발육(發育) 및 형태적(形態的) 특징(特徵))

  • Chun, J.C.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 1986
  • The growth, development, and morphological characteristics of Echinochtoa colons (L.) Link were determined through one life cycle. E. colons emerged 2 to 3 days after seeding (DAS) and reached the two leaf stage by 8 DAS. During the early growth stages, root length was greater than plant height, but the relationship was reversed from 4 weeks after seeding (WAS). Tillering started from the third leaf of the main culm as the sixth leaf on the main calm emerged. The unfolding of the leaves and tillering followed a regular pattern during the vegetative growth period. This resulted in the production of 19 tillers (5 primary, 12 secondary, 1 tertiary, and I nodal) at the 14-leaf stage. Shoot-root weight ratio was highest just before panicle initiation. The second spike from the top of the panicle was the shortest and produced the fewest seeds. Thereafter, spike length and the number of seeds per spike generally increased, the lower the position of the spike on the panicle. Seeds on the lower spikes weighed less and had lower germination ability than those from the upper spikes. Adventitious roots arose from the leaf sheath bases of a flowering stalk. The ability to produce adventitious roots was greater in a younger stalls than in an older stalk.

  • PDF

Effect of Different Nutrient Solution and Light Quality on Growth and Glucosinolate Contents of Watercress in Hydroponics (배양액의 종류 및 광질이 물냉이의 생육 및 Glucosinolate 함량에 미치는 영향)

  • Choi, Jae Yun;Kim, Sung Jin;Bok, Kwon Jeong;Lee, Kwang Ya;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.371-380
    • /
    • 2018
  • Aim of this study was to investigate the effects of different nutrient solutions and various light qualities generated by LED on the growth and glucosinolates contents of watercress (Nasturtium officinale) grown under hydroponics for 3 weeks. The seeds of watercress were sown on crushed rockwool media and raised them for two weeks. They were transplanted in a semi-DFT (deep flow technique) hydroponics system. A controlled-environment room was maintained at $20{\pm}1^{\circ}C$ and $16{\pm}1^{\circ}C$ temperatures and $65{\pm}10%$ and $75{\pm}10%$ relative humidity (day and night, respectively), with a provided photosynthetic photon flux density (PPFD) of $180{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and a photoperiod of 16/8h. To find out the best kinds of nutrient solutions for growing watercress, Otsuka House 1A (OTS), Horticultural Experiment Station in Korea (HES), and Netherland's Proefstaion voor Bloemisterij en Gasgroente (PBG) were adapted with initial EC of $1.0-1.3dS{\cdot}m^{-1}$ and pH of 6.2, irradiating PPFD with fluorescent lamps (Ex-1). Either monochromatic (W10 and R10) or mixed LEDs (R5B1, R3B1, R2B1G1, and W2B1G1) were irradiated with a differing ratio of each LED's PPFD to understanding light quality on the growth and glucosinolates contents of watercress (Ex-2). Although significant difference in the shoot growth of watercress was not found among three nutrient solutions treatments, but the root fresh weight increased by 13.7% and 55.1% in PBG and OTS compared to HES, respectively. OTS increased the gluconasturtiin content by 96% and 65% compared to PBG and HES. Compared with the white light (W10), the red light (R10) showed a 101.3% increase in the shoot length of watercress. Increasing blue light portion positively affected plant growth. The content of total glucosinolates in watercress was increased by 144.5% and 70% per unit dry weight in R3B1 treatment compared with R2B1G1 and W10 treatments, respectively. The growth and total glucosinolates contents of the watercress were highest under R3B1 among six light qualities.

Plant Regeneration and Saponin Contents in Codonopsis lanceolata L. (더덕의 체세포배로부터 식물체 재생과 사포닌 함량 변화)

  • Choi, Myung-Suk;Choi, Pil-Son
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.4
    • /
    • pp.275-281
    • /
    • 1999
  • Embryogenic calli of Codonopsis lanceolata were cultured on MS agar medium containing various concentrations of sucrose as a carbon source. Upon transfer to MS basal medium, somatic embryos of cotyledonary stage converted to plantlets. When sucrose was added with greater than 4%, the number of shoots and roots regenerated from somatic embryo increased. However, the growth of shoots and roots was retarded in agar medium with more than 2% sucrose, but promoted in medium with lower concentration of sucrose. Saponin contents of shoots regenerated from somatic embryos, embryogenic calli, non-embryogenic calli, and native roots were determined by HPLC. Saponin contents of native root was variable, depending on regenerant, embryogenic calli, and cotyledonary embryos. The saponin contents of regenerated roots in medium with high sucrose was similar to native roots. Saponins content based on cell differentiation to shoot and root was dramatically decreased. This results could be effectively controlled for the production of useful secondary metabolites.

  • PDF

AB3217-A and B, herbicidal compounds related to anisomycin from Streptomyces sp. ME-13 (Streptomyces sp. ME-13 균주가 생산하는 anisomycin계 AB3217 화합물의 제초활성)

  • Kim, Won-Kon;Kim, Jong-Pyung;Park, Dong-Jin;Kim, Chang-Jin;Kwak, Sang-Soo;Yoo, Ick-Dong
    • Applied Biological Chemistry
    • /
    • v.39 no.2
    • /
    • pp.153-158
    • /
    • 1996
  • During the screening of herbicidal substances from microbial secondary metabolites using photoautotrophic cells, a strain of ME-13 with strong herbicidal activity was isolated from soil. Based on the taxonomic studies, the strain was identified as Streptomyces. Two active compounds were purified from the culture broth through the column chromatographies using active charcoal, silica gel, MCI gel, and ODS HPLC. The compounds were identified as AB3217-A and B, respectively, related to anisomycin by spectroscopic methods. AB3217-A and B completely suppressed the germination of radish and barnyard grass at 25 ppm. In comparison to anisomycin, they showed the 6 times higher inhibitory activities against the growth of shoot and root of radish and barnyard grass with EC5O of around 6 ppm.

  • PDF

Relationship between the sexual and the vegetative organs in a Polygonatum humile (Liliaceae) population in a temperate forest gap

  • Min, Byeong-Mee
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.256-264
    • /
    • 2017
  • Background: The aim of this study was to clarify the relationship between the sexual reproduction and the resource allocation in a natural Polygonatum humile population grown in a temperate mixed forest gap. For this aim, the plant size, the node which flower was formed, the fruiting rate, and the dry weight of each organ were monitored from June 2014 to August 2015. Results: Firstly, in 3-13-leaf plants, plants with leaves ${\leq}8$ did not have flowers and in plants with over 9 leaves the flowering rate increased with the number of leaves. Among plants with the same number of leaves, the total leaf area and dry weight of flowering plants were larger than those of non-flowering plants. The minimum leaf area and dry weight of flowering plants were $100cm^2$ and 200 mg, respectively. Secondary, the flowers were formed at the 3rd~8th nodes, and the flowering rate was highest at the 5th node. Thirdly, cumulative values of leaf properties from the last leaf (the top leaf on a stem) to the same leaf rank were greater in a plant with a reproductive organ than in a plant without a reproductive organ. Fourthly, fruit set was 6.1% and faithful fruit was 2.6% of total flowers. Biomasses of new rhizomes produced per milligram dry weight of leaf were $0.397{\pm}190mg$ in plants that set fruit and $0.520{\pm}0.263mg$ in plants that did not, and the difference between the 2 plant groups was significant at the 0.1% level. Conclusions: P. humile showed that the 1st flower formed on the 3rd node from the shoot's base. And P. humile showed the minimum plant size needed in fruiting, and fruiting restricted the growth of new rhizomes. However, the fruiting rate was very low. Thus, it was thought that the low fruiting rate caused more energy to invest in the rhizomes, leading to a longer rhizome. A longer rhizome was thought to be more advantageous than a short one to avoid the shading.