References
- Abaid-Ullah, M., Hassan, M. N., Jamil, M., Brader, G., Shah, M. K., Sessitsch, A. and Hafeez, F. Y. 2015. Plant growth promoting rhizobacteria: an alternate way to improve yield and quality of wheat (Triticum aestivum). Int. J. Agric. Biol. 17, 51-60.
- Ahemad, M. 2012. Implications of bacterial resistance against heavy metals in bioremediation: a review. J. Inst. Integr. Omics Appl. Biotechnol. 3, 39-46.
- Ahemad, M. and Khan, M. S. 2010d. Phosphate-solubilizing and plant growth promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch. Environ. Contam. Toxicol. 58, 361-372. https://doi.org/10.1007/s00244-009-9382-z
- Ahemad, M. and Khan, M. S. 2012a. Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86, 945-950. https://doi.org/10.1016/j.chemosphere.2011.11.013
- Ahemad, M. and Kibret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 26, 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
- Albacete, A., Ghanem, M. E., Martinez-Andujar, C., Acosta, M., Sanchez-Bravo, J., Martinez, V., Lutts, S., Dodd, I. C. and Perez-Alfocea, F. 2008. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot. 59, 4119-4131. https://doi.org/10.1093/jxb/ern251
- Alves, B. J. R., Boddey, R. M. and Urquiaga, S. 2004. The success of Biological Nitrogen Fixation (BNF) in soybean in Brazil. Plant Soil. 252, 1-9. https://doi.org/10.1023/A:1024191913296
- Ammari, T. and Mengel, K. 2006. Total soluble Fe in soil solutions of chemically different soils. Geoderma 136, 876-885. https://doi.org/10.1016/j.geoderma.2006.06.013
- Anand, K., Kumari, B. and Mallick, M. A. 2016. Phosphate solubilizing microbes: An effective and alternative approach as biofertilizers. Int. J. Pharm. Pharm. Sci. 8, 37-40. https://doi.org/10.22159/ijpps.2016.v8i9.11466
- Arkhipova, T., Veselov, S., Melentiev, A., Martynenko, E. and Kudoyarova, G. 2005. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil. 272, 201-209. https://doi.org/10.1007/s11104-004-5047-x
- Arora, N. K., Tewari, S. and Singh, R. 2013. Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs, pp. 411-449. In: Arora, N. K. (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, India.
- Arshad, M. and Frankenberger, W. T. 1998. Plant growth-regulating substances in the rhizosphere: Microbial production and functions. Adv. Agron. 62, 46-151.
- Bahadur, I., Maurya, B. R., Meena, V. S., Saha, M., Kumar, A. and Aeron, A. 2017. Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria (MSR) isolated from Indo-Gangetic Plain (IGP) of India. Geomicrobiol. J. 34, 454-466. https://doi.org/10.1080/01490451.2016.1219431
- Bailly, A. and Weisskopf, L. 2012. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal. Behav. 7, 79-85. https://doi.org/10.4161/psb.7.1.18418
- Belimov, A. A., Dodd, I. C., Hontzeas, N., Theobald, J. C., Safronova, V. I. and Davies, W. J. 2009. Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol. 181, 413-423. https://doi.org/10.1111/j.1469-8137.2008.02657.x
- Belimov, A. A., Kunakova, A. M., Safronova, V. I., Stepanok, V. V., Iudkin, L. Iu., Alekseev, Iu. V. and Kozhemiakov, A. P. 2004. Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiologia 73, 99-106.
- Berendsen, R. L., Pieterse, C. M. and Bakker, P. A. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478-486. https://doi.org/10.1016/j.tplants.2012.04.001
- Berg, G. and Smalla, K. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1-13. https://doi.org/10.1111/j.1574-6941.2009.00654.x
- Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28, 1327-1350. https://doi.org/10.1007/s11274-011-0979-9
- Bishopp, A., Mahonen, A. P. and Helariutta, Y. 2006. Signs of change: Hormone receptors that regulate plant development. Development 133, 1857-1869. https://doi.org/10.1242/dev.02359
- Bomke, C. and Tudzynski, B. 2009. Diversity, regulation and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70, 1876-1893. https://doi.org/10.1016/j.phytochem.2009.05.020
- Borrell, A. K., Hammer, G. L. and Henzell, R. G. 2000. Does maintaining green leaf area in sorghum improve yield under drought? II. Dry matter production and yield. Crop Sci. 40, 1037-1048. https://doi.org/10.2135/cropsci2000.4041037x
- Bottini, R., Cassan, F. and Piccoli, P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65, 497-503. https://doi.org/10.1007/s00253-004-1696-1
- Cassan, F., Vanderleyden, J. and Spaepen, S. 2014. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J. Plant Growth Regul. 33, 440-459. https://doi.org/10.1007/s00344-013-9362-4
- Chen, Y. P., Rekha, P. D., Arun, A. B., Shen, F. T., Lai, W. A. and Young, C. C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34, 33-41. https://doi.org/10.1016/j.apsoil.2005.12.002
- Cohen, A. C., Bottini, R. and Piccoli, P. N. 2008. Azospirillum brasilense Sp245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul. 54, 97-103. https://doi.org/10.1007/s10725-007-9232-9
- Cohen, A. C., Travaglia, C. N., Bottini, R. and Piccoli, P. N. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87, 455-462. https://doi.org/10.1139/B09-023
- Cohen, A. C., Bottini, R., Pontin, M., Berli, F. J., Moreno, D., Boccanlandro, H., Travaglia, C. N. and Piccoli, P. N. 2015. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol. Plant. 153, 79-90. https://doi.org/10.1111/ppl.12221
- Conrath, U., Beckers, G. J. M., Flors, V., Garcia-Agustin, P., Jakab, G. and Mauch, F. 2006. Priming: getting ready for battle. Mol. Plant Microbe. Interact. 19, 1062-1071. https://doi.org/10.1094/MPMI-19-1062
- Crowley, D. E. 2006 Microbial Siderophores in the Plant Rhizosphere, pp 169-198. In: Barton L.L. and Abadia J. (eds), Iron Nutrition in Plants and Rhizospheric Microorganisms. Springer Publisher: Dordrecht, The Netherland.
- Dakora, F., Matiru, V. and Kanu, A. 2015. Rhizosphere ecology of lumichrome and riboflavin, two bacterial signal molecules eliciting developmental changes in plants. Front. Plant Sci. 6, 700. https://doi.org/10.3389/fpls.2015.00700
- Das, A. J., Kumar, M. and Kumar, R. 2013. Plant growth promoting rhizobacteria (PGPR): An alternative of chemical fertilizer for sustainable, environment friendly agriculture. Res. J. Agric. For. Sci. 1, 21-23.
- Davies, P. J. 2010. Introduction, pp. 1-35. In: Davies, P. J. (ed.), Plant hormones: Biosynthesis, signal transduction, action! revised 3rd edition. Springer Publisher: Dordrecht, The Netherland.
- Deka, H., Deka, S. and Baruah, C. 2015. Plant growth promoting rhizobacteria for value addition: mechanism of action, pp 305-321. In: Egamberdieva, D., Shrivastava, S., Varma, A. (Eds.), Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Springer International Publishing, Cham, New York, U. S. A.
- Dobbelaere, S., Vanderleyden, J. and Okon, Y. 2003. Plant growth promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22, 107-149. https://doi.org/10.1080/713610853
- Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. and Belimov, A. A. 2010. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157, 361-379. https://doi.org/10.1111/j.1744-7348.2010.00439.x
- Duca, D., Lorv, J., Patten, C. L., Rose, D. and Glick, B. R. 2014. Indole-3-acetic acid in plant-microbe interactions. Antonie van Leeuwenhoek 106, 85-125. https://doi.org/10.1007/s10482-013-0095-y
- Egamberdieva, D. and Lugtenberg, B. 2014. Use of Plant Growth-Promoting Rhizobacteria to Alleviate Salinity Stress in Plants, pp 73-96. In: Miransari, M. (ed) Use of Microbes for the Alleviation of Soil Stresses, Volume 1. Springer Publisher: New York, U. S. A.
- Etesami, H., Emami, S. and Alikhani, H. A. 2017. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects A review. J. Soil Sci. Plant Nutr. 17, 897-911. https://doi.org/10.4067/S0718-95162017000400005
- Galland, M., Gamet, L., Varoquaux, F., Touraine, B., Touraine, B. and Desbrosses, G. 2012. The ethylene pathway contributes to root hair elongation induced by the beneficial bacteria Phyllobacterium brassicacearum STM196. Plant Sci. 190, 74-81. https://doi.org/10.1016/j.plantsci.2012.03.008
- Ghosh, S. and Basu, P. S. 2006. Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol. Res. 161, 362-366. https://doi.org/10.1016/j.micres.2006.01.001
- Glick, B. R., Penrose, D. M. and Li, J. P. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190, 63-68. https://doi.org/10.1006/jtbi.1997.0532
- Glick, B. R. 2012. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica (Cairo) 2012, 963401.
- Gontia-Mishra, I., Sapre, S., Sharma, A. and Tiwari, S. 2016. Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J. Plant Growth Regul. 35, 1000-1012. https://doi.org/10.1007/s00344-016-9598-x
- Gouws, L. M., Botes, E., Wiese, A. J., Trenkamp, S., Torres-Jerez, I., Tang, Y., Hills, P. N., Usadel, B., Lloyd, J. R., Fernie, A. R., Kossmann, J. and van der Merwe, M. J. 2012. The plant growth-promoting substance, lumichrome, mimics starch, and ethylene-associated symbiotic responses in lotus and tomato roots. Front. Plant Sci. 3, 120. https://doi.org/10.3389/fpls.2012.00120
- Govindarajan, M., Balandreau, J., Kwon, S. W., Weon, H. Y. and Lakshminarasimhan, C. 2008. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb. Ecol. 55, 21-37. https://doi.org/10.1007/s00248-007-9247-9
- Gray, E. J. and Smith, D. L. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant bacterium signaling processes. Soil Biol. Biochem. 37, 395-412. https://doi.org/10.1016/j.soilbio.2004.08.030
- Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K. and Singh, V. 2015. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Microb. Biochem. Technol. 7, 96-102.
- Gupta, A., Meyer, J. M. and Goel, R. 2002. Development of heavy metal-resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI 4014 and their characterization. Curr. Microbiol. 45, 323-327. https://doi.org/10.1007/s00284-002-3762-1
- Gutierrez-Manero, F. J., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F. R. and Talon, M. 2001. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant. 111, 206-211. https://doi.org/10.1034/j.1399-3054.2001.1110211.x
- Ham, B. K., Chen, J., Yan, Y. and Lucas, W. J. 2018. Insights into plant phosphate sensing and signaling. Curr. Opin. Biotechnol. 49, 1-9. https://doi.org/10.1016/j.copbio.2017.07.005
- Iqbal, A. and Hasnain, S. 2013. Aeromonas punctata PNS-1: a promising candidate to change the root morphogenesis of Arabidopsis thaliana in MS and sand system. Acta Physiol. Plant. 35, 657-665. https://doi.org/10.1007/s11738-012-1106-8
- James, E. K., Gyaneshwar, P., Mathan, N., Barraquio, W. L., Reddy, P. M., Iannetta, P. P. M., Olivares, F. L. and Ladha, J. K. 2002. Infection and colonization of rice seedlings by the plant growth promoting bacterium Herbaspirillum seropedicae Z67. Mol. Plant Microbe. Interact. 15, 894-906. https://doi.org/10.1094/MPMI.2002.15.9.894
- Jameson, P. 2000. Cytokinins and auxins in plant-pathogens interactions-an overview. Plant Growth Regul. 32, 369-380. https://doi.org/10.1023/A:1010733617543
- Jha, C. K. and Saraf, M. 2015. Plant growth promoting rhizobacteria (PGPR): a review. E3 J. Agric. Res. Dev. 5, 108-119.
- Kamran, S., Shahid, I., Baig, D. N., Rizwan, M., Malik, K. A. and Mehnaz, S. 2017. Contribution of zinc solubilizing bacteria in growth promotion and zinc content of wheat. Front. Microbiol. 8, 2593. https://doi.org/10.3389/fmicb.2017.02593
- Kang, S. M., Khan, A. L., Hamayun, M., Hussain, J., Joo, G. J., You, Y. H., Kim, J. G. and Lee, I. J. 2012. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. J. Microbiol. 50, 902-909. https://doi.org/10.1007/s12275-012-2273-4
- Kang, S. M., Radhakrishnan, R., Khan, A. L., Kim, M. J., Park, J. M., Kim, B. R., Shin, D. H. and Lee, I. J. 2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 84, 115-124. https://doi.org/10.1016/j.plaphy.2014.09.001
- Kang, S. M., Khan, A. L., Waqas, M., You, Y. H., Kim, J. H., Kim, J. G., Hamayun, M. and Lee, I. J. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. 9, 673-682. https://doi.org/10.1080/17429145.2014.894587
-
Khan, A. L., Waqas, M., Hussain, J., Al-Harrasi, A., Hamayun, M. and Lee, I. J. 2015. Phytohormones enabled endophytic fungal symbiosis improve aluminum phyto extraction in tolerant Solanum lycopersicum: an example of Penicillium janthinellum LK5 and comparison with exogenous
$GA_3$ . J. Hazard Mater. 295, 70-78. https://doi.org/10.1016/j.jhazmat.2015.04.008 - Khan, M. S., Zaidi, A., Wani, P. A. and Oves, M. 2009. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ. Chem. Lett. 7, 1-19. https://doi.org/10.1007/s10311-008-0155-0
- Khan, W., Prithiviraj, B. and Smith, D. L. 2008. Nod factor [Nod Bj V (C18:1, MeFuc)] and lumichrome enhance photosynthesis and growth of corn and soybean. J. Plant Physiol. 165, 1342-1351. https://doi.org/10.1016/j.jplph.2007.11.001
- Kim, J. and Rees, D. C. 1994. Nitrogenase and biological nitrogen fixation. Biochemistry 33, 389-397. https://doi.org/10.1021/bi00168a001
- Kloepper, J. W., Schroth, M. N. and Miller, T. D. 1980. Effects of rhizosphere colonization by plant growth promoting rhizobacteria on potato plant development and yield. Phytopathology 70, 1078-1082. https://doi.org/10.1094/Phyto-70-1078
- Kumar, A., Kumar, A. and Pratush, A. 2014. Molecular diversity and functional variability of environmental isolates of Bacillus species. Springerplus 3, 312. https://doi.org/10.1186/2193-1801-3-312
- Kumar, A., Singh, V., Singh, M., Singh, P. P., Singh, S. K., Singh, P. K. and Pandey, K. D. 2016b. Isolation of plant growth promoting rhizobacteria and their impact on growth and curcumin content in Curcuma longa L. Biocatal. Agric. Biotechnol. 8, 1-7. https://doi.org/10.1016/j.bcab.2016.07.002
- Li, M., Guo, R., Yu, F., Chen, X., Zhao, H., Li, H. and Wu, J. 2018. Indole-3-acetic Acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens ZZ21. Int. J. Mol. Sci. 19, 443. https://doi.org/10.3390/ijms19020443
- Chen, L., Dodd, I. C., Theobald, J. C., Belimov, A. A. and Davies, W. J. 2013. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J. Exp. Bot. 64, 1565-1573. https://doi.org/10.1093/jxb/ert031
- Liu, D., Lian, B. and Dong, H. 2012. Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol. J. 29, 413-421. https://doi.org/10.1080/01490451.2011.576602
- Llorente, B. E., Alasia, M. A. and Larraburu, E. E. 2016. Biofertilization with Azospirillum brasilense improves in vitro culture of Handroanthus ochraceus, a forestry, ornamental and medicinal plant. N. Biotechnol. 33, 32-40. https://doi.org/10.1016/j.nbt.2015.07.006
- Lopez-Bucio, J., Campos-Cuevas, J. C., Hernandez-Calderon, E., Velasquez-Becerra, C., Farias-Rodriguez, R., Macias-Rodriguez, L. I. and Valencia-Cantero, E. 2007. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol. Plant Microbe Interact. 20, 207-217. https://doi.org/10.1094/MPMI-20-2-0207
- Lynch, J. and Whipps, J. 1990. Substrate flow in the rhizosphere. Plant Soil 129, 1-10. https://doi.org/10.1007/BF00011685
- Manjili, F. A., Sedghi, M. and Pessarakli, M. 2012. Effects of phytohormones on proline content and antioxidant enzymes of various wheat cultivars under salinity stress. J. Plant Nutr. 35, 1098-1111. https://doi.org/10.1080/01904167.2012.671411
- Manjunath, M., Prasanna, R., Sharma, P., Nain, L. and Singh, R. 2011. Developing PGPR consortia using novel genera Providencia and Alcaligenes along with cyanobacteria for wheat. Arch. Agron. Soil Sci. 57, 873-887. https://doi.org/10.1080/03650340.2010.499902
- Manulis, S., Haviv-Chesner, A., Brandl, M. T., Lindow, S. E. and Barash, I. 1998. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol. Plant Microbe Interact. 11, 634-642. https://doi.org/10.1094/MPMI.1998.11.7.634
- Martinez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G. M. L. M. and Mora, M. L. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 10, 293-319.
- Matiru, V. N. and Dakora, F. D. 2005a. The rhizosphere signal molecule lumichrome alters seedling development in both legumes and cereals. New Phytol. 166, 439-444. https://doi.org/10.1111/j.1469-8137.2005.01344.x
- Mayak, S., Tirosh, T. and Glick, B. R. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166, 525-530. https://doi.org/10.1016/j.plantsci.2003.10.025
- Minerdi, D., Bossi, S., Maffei, M. E., Gullino, M. L. and Garibaldi, A. 2011. Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansion A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol. Ecol. 76, 342-351. https://doi.org/10.1111/j.1574-6941.2011.01051.x
- Mohapatra, P. K., Panigrahi, R. and Turner, N. C. 2011. Chapter five - Physiology of spikelet development on the rice panicle: is manipulation of apical dominance crucial for grain yield improvement? Adv. Agron. 110, 333-360. https://doi.org/10.1016/B978-0-12-385531-2.00005-0
- Morgan, P. W. and Drew, M. C. 1997. Ethylene and plant responses to stress. Physiol. Plant. 100, 620-630. https://doi.org/10.1111/j.1399-3054.1997.tb03068.x
- Nambara, E. and Marion-Poll, A. 2005. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56, 165-185. https://doi.org/10.1146/annurev.arplant.56.032604.144046
- Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O. and Jones, J. D. G. 2006. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436-443. https://doi.org/10.1126/science.1126088
- Negi, S., Sukumar, P., Liu, X., Cohen, J. D. and Muday, C. K. 2010. Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant J. 61, 3-15. https://doi.org/10.1111/j.1365-313X.2009.04027.x
- Nett, R. S., Montanares, M., Marcassa, A., Lu, X., Nagel, R., Charles, T. C., Hedden, P., Rojas, M. C. and Peters, R. J. 2017. Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nat. Chem. Biol. 13, 69-74. https://doi.org/10.1038/nchembio.2232
- Ortiz-Castro, R., Martinez-Trujillo, M. and Lopez-Bucio, J. 2008. N-Acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ. 31, 1497-1509. https://doi.org/10.1111/j.1365-3040.2008.01863.x
- Ortiz-Castro, R., Diaz-Perez, C., Martinez-Trujillo, M., del Rio, R. E., Campos-Garcia, J. and Lopez-Bucio, J. 2011. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc. Natl. Acad. Sci. USA. 108, 7253-7258. https://doi.org/10.1073/pnas.1006740108
- Oteino, N., Lally, R. D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K. J. and Dowling, D. N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 6, 745. https://doi.org/10.3389/fmicb.2015.00745
- Pahari, A. and Mishra, B. B. 2017. Antibiosis of siderophore producing bacterial isolates against phytopathogens and their effect on growth of okra. Int. J. Curr. Microbiol. App. Sci. 6, 1925-1929. https://doi.org/10.20546/ijcmas.2017.608.227
- Parmar, P. and Sindhu, S. S. 2013. Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J. Microbiol. Res. 3, 25-31.
- Patten, C. J., Blakney, A. J. C. and Coulson, T. J. D. 2013. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit. Rev. Microbiol. 39, 395-415. https://doi.org/10.3109/1040841X.2012.716819
- Pierik, R., Tholde D., Poorter H., Visser E. J. W. and Voesenek, L. A. C. J. 2006. The Janus face of ethylene: growth inhibition and stimulation. Trends Plant Sci. 11, 176-183. https://doi.org/10.1016/j.tplants.2006.02.006
- Poupin, M. J., Timmermann, T., Vega, A., Zuniga, A. and Gonzalez, B. 2013. Effects of the plant growth-promoting Bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana. PLoS One 8, e69435. https://doi.org/10.1371/journal.pone.0069435
- Poupin, M. J., Greve, M., Carmona, V. and Pinedo, I. 2016. A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN. Front. Plant Sci. 7, 492.
- Rajkumar, M., Ae, N., Prasad, M. N. V. and Freitas, H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28, 142-149. https://doi.org/10.1016/j.tibtech.2009.12.002
- Raymond, J., Siefert, J. L., Staples, C. R. and Blankenship, R. E. 2004. The natural history of nitrogen fixation. Mol. Biol. Evol. 21, 541- 554. https://doi.org/10.1093/molbev/msh047
- Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA. 100, 4927-4932. https://doi.org/10.1073/pnas.0730845100
- Sakakibara, H. 2006. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431-449. https://doi.org/10.1146/annurev.arplant.57.032905.105231
- Schulz, B. and Boyle, C. 2006. What are Endophytes?, pp. 1-13. In: Schulz B. J. E., Boyle C. J. C. and Sieber T. N. (eds), Microbial Root Endophytes. Soil Biology, vol 9. Springer, Berlin, Heidelberg.
- Setiawati, T. C. and Mutmainnah, L. 2016. Solubilization of Potassium containing mineral by microorganisms from sugarcane rhizosphere. Agri. Sci. Procedia 9, 108-117.
- Shahzad, R., Waqas, M., Khan, A. L., Asaf, S., Khan, M. A., Kang, S. M., Yun, B. W. and Lee, I. J. 2016. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol. Biochem. 106, 236-243. https://doi.org/10.1016/j.plaphy.2016.05.006
- Shaikh, S., Wani, S. and Sayyed, R. 2018. Impact of Interactions between Rhizosphere and Rhizobacteria: A Review. J. Bacteriol. Mycol. 5, 1058.
- Sharp, R. E. and Le Noble, M. E. 2002. ABA, ethylene and the control of shoot and root growth under water stress. J. Exp. Bot. 53, 33-37. https://doi.org/10.1093/jexbot/53.366.33
- Shilev, S. 2013. Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants, pp 147-150. In: Arora, N. K. (ed), Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, India.
- Simon, L., Bousquet, J., Levesque, R. C. and Lalonde, M. 1993. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363, 67-69. https://doi.org/10.1038/363067a0
- Singh, B., Natesan, S. K. A., Singh, B. K. and Usha, K. 2005. Improving zinc efficiency of cereals under zinc deficiency. Curr. Sci. 88, 36-44.
- Singh, M., Kumar, A., Singh, R. and Pandey, K. D. 2017a. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech. 7, 315.
- Singh, S. and Prasad, S. M. 2014. Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Sci. Hortic. 176, 1-10. https://doi.org/10.1016/j.scienta.2014.06.022
- Singh, V. K., Singh, A. K. and Kumar, A. 2017b. Disease management of tomato through PGPB: current trends and future perspective. 3 Biotech. 7, 255. https://doi.org/10.1007/s13205-017-0896-1
- Spaepen, S., Vanderleyden, J. and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism plant signaling. FEMS Microbiol. Rev. 31, 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
- Torres, A. R., Kaschuk, G., Saridakis, G. P. and Hungria, M. 2012. Genetic variability in Bradyrhizobium japonicum strains nodulating soybean Glycine max (L.) Merrill. World J. Microbiol. Biotechnol. 28, 1831-1835. https://doi.org/10.1007/s11274-011-0964-3
- Uren, N. C. 2000. Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants, pp. 1-21. In: Pinton, R., Varanini, Z. and Nannipieri, P. (eds.), The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface, second edition. CRC Press: Boca Raton, FL, U. S. A.
- Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moenne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dye, F. and Prigent-Combaret, C. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4, 356. https://doi.org/10.3389/fpls.2013.00356
- Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487-511. https://doi.org/10.1093/jxb/52.suppl_1.487
- Xu, J., Li, X. L. and Luo, L. 2012. Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl. Environ. Microbiol. 78, 8056-8061. https://doi.org/10.1128/AEM.01276-12
- You, Y. H., Yoon, H., Kang, S. M., Shin, J. H., Choo, Y. S, Lee, I. J., Lee, J. M. and Kim, J. G. 2012. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J. Microbiol. Biotechnol. 22, 1549-1556. https://doi.org/10.4014/jmb.1205.05010
- Zahran, H. H. 2001. Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J. Biotechnol. 91, 143-153. https://doi.org/10.1016/S0168-1656(01)00342-X
- Zaidi, A., Ahmad, E., Khan, M. S., Saif, S. and Rizvi, A. 2015. Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci. Hortic. 193, 231-239. https://doi.org/10.1016/j.scienta.2015.07.020
- Zaidi, A. and Khan, M. S. 2005. Interactive effect of rhizospheric microorganisms on growth, yield and nutrient uptake of wheat. J. Plant Nutr. 28, 2079-2092. https://doi.org/10.1080/01904160500320897
- Zamioudis, C., Mastranesti, P., Dhonukshe, P., Blilou, I. and Pieterse, C. M. J. 2013. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol. 162, 304-318. https://doi.org/10.1104/pp.112.212597
- Zhang, H., Kim, M. S., Krishnamachari, V., Payton, P., Sun, Y., Grimson, M., Farag, M. A., Ryu, C. M., Allen, R., Melo, I. S. and Pare, P. W. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226, 839-851. https://doi.org/10.1007/s00425-007-0530-2
- Zhang, A., Zhao, G., Gao, T., Wang, W., Li, J., Zhang, S. and Zhu, B. 2013. Solubilization of insoluble potassium and phosphate by Paenibacillus kribensis CX-7: a soil microorganism with biological control potential. Afri. J. Microbiol. Res. 7, 41-47. https://doi.org/10.5897/AJMR12.1485
- Zhang, C. and Kong, F. 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizo-spheric soil and their effect on tobacco plants. Appl. Soil. Ecol. 82, 18-25. https://doi.org/10.1016/j.apsoil.2014.05.002
- Zhao, Q., Zhang, C., Jia, Z., Huang, Y., Li, H. and Song, S. 2015. Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana. Front. Plant Sci. 5, 1-11.