• 제목/요약/키워드: secondary phase particles

검색결과 68건 처리시간 0.026초

Biodegradation of Secondary Phase Particles in Magnesium Alloys: A Critical Review

  • Kannan, M. Bobby
    • Corrosion Science and Technology
    • /
    • 제15권2호
    • /
    • pp.54-57
    • /
    • 2016
  • Magnesium alloys have been extensively studied in recent years for potential biodegradable implant applications. A great deal of work has been done on the evaluation of the corrosion behaviour of magnesium alloys under in vitro and in vivo conditions. However, magnesium alloys, in general, contain secondary phase particles distributed in the matrix and/or along the grain boundaries. Owing to their difference in chemistry in comparison with magnesium matrix, these particles may exhibit different corrosion behaviour. It is essential to understand the corrosion behaviour of secondary phase particles in magnesium alloys in physiological conditions for implant applications. This paper critically reviews the biodegradation behaviour of secondary phase particles in magnesium alloys.

$10^{\circ}$상향분사된 혼합분류의 유동장 해석 (A Flow Field Analysis of Compound Jets Modified at a 10 Degree Upward Angle)

  • 박상규;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.103-110
    • /
    • 2000
  • A two phase compound jet, which mixes pulverized solid particles with the air in the test section, is experimentally analyzed in this study. Two phase flow is jetted 10 degree upward in the primary jet, while the secondary jet utilizes the air only. The height difference between the primary and secondary central axises is 32.5mm. The velocity vector field, concentration field, and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. When the jet angle of the secondary jet goes into effect, the solid particle recirculation zone becomes larger. Also, solid particle concentration becomes more dense due to a velocity decrement of particles.

  • PDF

Solar Cyclic Modulation of Diurnal Variation in Cosmic Ray Intensity

  • Park, Eun Ho;Jung, Jongil;Oh, Suyeon;Evenson, Paul
    • Journal of Astronomy and Space Sciences
    • /
    • 제35권4호
    • /
    • pp.219-225
    • /
    • 2018
  • Cosmic rays are ions that move at relativistic speeds. They generate secondary cosmic rays by successive collisions with atmospheric particles, and then, the secondary particles reach the ground. The secondary particles are mainly neutrons and muons, and the neutrons are observed by the ground neutron monitor. This study compared the diurnal variation in cosmic ray intensity obtained via harmonic analysis and that obtained through the pile-up method, which was examined in a previous study. In addition, we analyzed the maximum phase of the diurnal variation using four neutron monitors with a cutoff rigidity below approximately 6 GV, located at similar longitudes to the Oulu and Rome neutron monitors. Expanding the data of solar cycles 20-24, we examined the time of the maximum cosmic ray intensity, that is, the maximum phase regarding the solar cyclic modulation. During solar cycles 20-24, the maximum phase derived by harmonic analysis showed no significant difference with that derived by the pile-up method. Thus, the pile-up method, a relatively straightforward process to analyze diurnal variation, could replace the complex harmonic analysis. In addition, the maximum phase at six neutron monitors shows the 22-year cyclic variation very clearly. The maximum phase tends to appear earlier and increase the width of the variation in solar cycles as the cutoff rigidity increases.

The Characteristics of YAG:Ce Phosphor Powder Prepared Using a NO3--Malonic Acid-NH4NO3-NH3·H2O System

  • Jeong, Jin-An;Park, Kyung-Hwan;Lee, Dong-Hoon;Kim, Hong-Gun;Kim, Yoo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1141-1146
    • /
    • 2012
  • Ce-doped $Y_3Al_5O_{12}$ (YAG:Ce) phosphor powder was prepared using a ${NO_3}^-$-malonic acid-$NH_4NO_3-NH_3{\cdot}H_2O$ system. The YAG:Ce precursor was ignited at $240^{\circ}C$ and the resulting powder contained YAG:Ce crystallites (42%) - active in the visible region at 460 nm - amorphous particles (53%) - inactive at visible wavelengths - and less than 3% oxide (3%) crystallite impurities. The impurities transformed to acitive YAG:Ce crystallites at above $800^{\circ}C$. At above $1000^{\circ}C$, the amorphous phase became YAG phase and isolated $Ce_2O$ crystallites emerged. The powder particles comprised < $4{\mu}m$ secondary aggregates of 20 nm primary particles. The thermal dusting of the secondary particles coincided with the aggregation of the secondary particles at above $900^{\circ}C$.

속도차가 존재하는 두 분류의 2상유동에 관한 연구 (Study on Two Phase Flow of Two Jets Existing Velocity Difference)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권4호
    • /
    • pp.515-521
    • /
    • 1998
  • In this study the mixing process of two-phase flow which makes two jets existing vlocity difference are analyzed. The primary jet is jetted on the condition of the state mixed pulverized solid pariticle with air and the velocity in the secondary jet is changed into three kinds velocities(0.60, 75m/s) The velocity vector field concentration field and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. As the velocity of secondary jet increases the solid particle recirculation zone becomes larger. Also solid particle concentration gets dense due to velocity decrement of particles.

  • PDF

2-方程式 모델 에 의한 二相亂流 제트流動 의 數値解析 (Calculation of Two-Phase Turbulent Jet with a Two-Equation Model)

  • 양선규;최영돈
    • 대한기계학회논문집
    • /
    • 제9권6호
    • /
    • pp.714-724
    • /
    • 1985
  • 본 논문에서는 입자가 부상된 2상유동의 해석에서 여러유동조건의 유동을 공 통적으로 해석할 수 있고 또 유동의 난류구조를 규명할 수 있도록 하기 위해서 2-방정 식 난류모델을 적용하였고 또 지배방정식들 속에 나타나는 1유체와 2유체의 2차 상관 관계들을 모형화 할 때 Taweel and Landau의 스펙트럼 이론을 확장발전시켜 적용하였 다.

Controlling the secondary phase of BSCCO 2223 tapes by thermal slide heat treatment(TSHT)

  • Park, Sung-Chang;Yoo, Jai-Moo;Ko, Jae-Woong;Kim, Young-Kuk;Kim, Cheol-Jin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.40-43
    • /
    • 2003
  • The phase transformation, variation of secondary phase, and critical current density $(J_c) for (Bi,Pb)_2Sr_2Ca_2Cu_3O_10 (2223)$ tapes have been studied through the thermal slide heat treatment (TSHT) process. This process consists of a multiple variations of oxygen partial pressures and temperatures at the initial heat treatment During the initial heat treatment some secondary phase such as $(Ca,Sr)_2CuO_3(2/1 AEC), (Ca,Sr)_{14}Cu_{24}O_{41} (14/24 AEC), and (Bi,Pb)_2Sr_2CuO_y$(2201, amorphous phase) farm in Bi-2223 tapes, especially at the 2223 grain boundaries. These secondary phases are detrimental to the phase transformation and final properties. In order to control the secondary phase in Bi-2223 tapes the amount and size of secondary phases among the TSHT process were observed. The results indicate that the amount and particle size of AEC particles were smaller when the TSHT process was used than when the normal process at the initial heat treatment was used which results in the improved $J_c$ properties after the final process.

Effects of Operating Variables on the Solid Circulation Rate in a Three-phase Circulating Fluidized Bed

  • Kim, Min Kon;Hong, Sung Kyu;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • 제53권4호
    • /
    • pp.440-444
    • /
    • 2015
  • Effects of operating variables on the solid circulation rate were investigated in a three-phase circulating fluidized bed, of which inside diameter was 0.102m and height was 3.5m, respectively. Gas velocity, primary and secondary liquid velocities, particle size and height of solid particles piled up in the solid recycle device were chosen as operating variables. The solid circulation rate increased with increasing primary and secondary liquid velocities and height of solid particles piled up in the solid recycle device, but decreased with increasing particle size. The value of solid circulation rate decreased only slightly with increasing gas velocity in the riser. The values of solid circulation rate were well correlated in terms of dimensionless groups within the experimental conditions.

화학 증착법에 의한 $TiO_2$ 초미분의 제조 및 입자 특성에 관한 연구 (Synthesis and Characterization of $TiO_2$ Ultrafine Powder by Chemical Vapor Deposition)

  • 염선민;이성호;김광호
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.37-44
    • /
    • 1995
  • TiO2 fine powders were synthesized using oxygenolysis and hydrolysis reaction of TiCl4 vapor in gas phase. The TiO2 powder synthesized showed morphological differences depending on reaction system as follows: TiCl4-O2 reaction system produced the monosized particles having polyhedral shape with well-defined crystal planes and the particles did not agglomerate into secondary particles. TiCl4-H2O reaction system, whereas, produced the spherical secondary particles which consisted of fine primary particles. Other powder characteristics such as particle size, impurity content and rutile content are also reported in this study.

  • PDF

생물기원 이차유기에어로졸의 점성도와 상 규명에 관한 최근 연구 동향 (Review of Viscosities and Phases of Biogenic Secondary Organic Aerosols)

  • 송미정
    • 한국대기환경학회지
    • /
    • 제32권4호
    • /
    • pp.349-359
    • /
    • 2016
  • Researchers have traditionally assumed that aerosol particles containing secondary organic aerosols (SOAs) are to be in liquid state with low viscosity even at low relative humidity. However, recent measurements showed that SOAs can have high viscosity under certain conditions. Herein, new different techniques for measurements of viscosities of SOA particles are introduced. Moreover, laboratory studies for the viscosities and the phases of biogenic SOAs produced by ${\alpha}$-pinene, isoprene, limonene, and ${\beta}$-caryophyllene of atmospheric relevance are reviewed. Future studies for determination of the phases of atmospheric aerosol particles are also suggested.