DOI QR코드

DOI QR Code

Biodegradation of Secondary Phase Particles in Magnesium Alloys: A Critical Review

  • Kannan, M. Bobby (Biomaterials and Engineering Materials (BEM) Laboratory School of Engineering and Physical Sciences James Cook University)
  • Received : 2016.01.28
  • Accepted : 2016.03.17
  • Published : 2016.04.30

Abstract

Magnesium alloys have been extensively studied in recent years for potential biodegradable implant applications. A great deal of work has been done on the evaluation of the corrosion behaviour of magnesium alloys under in vitro and in vivo conditions. However, magnesium alloys, in general, contain secondary phase particles distributed in the matrix and/or along the grain boundaries. Owing to their difference in chemistry in comparison with magnesium matrix, these particles may exhibit different corrosion behaviour. It is essential to understand the corrosion behaviour of secondary phase particles in magnesium alloys in physiological conditions for implant applications. This paper critically reviews the biodegradation behaviour of secondary phase particles in magnesium alloys.

Keywords

References

  1. F. Witte, N. Hort, C. Vogt, S. Cohen, K. Kainer, R. Willumeit, F. Feyerabend, Curr. Opin. Solid State. Mater. Sci., 12, 63 (2008) . https://doi.org/10.1016/j.cossms.2009.04.001
  2. M. P. Staiger, A. Pietak, J. Huadmai, G. Dias, Biomaterials, 27, 1728 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.003
  3. M. B. Kannan, R. K. Singh Raman, J. Biomed. Mater. Res. A, 93, 1050 (2010).
  4. G. Song, Corros. Sci., 49, 1696 (2007). https://doi.org/10.1016/j.corsci.2007.01.001
  5. C. Liu, Y. Xin, G. Tang, P. Chu, Mater. Sci. Eng. A-Struct., 456, 350 (2007). https://doi.org/10.1016/j.msea.2006.12.020
  6. R. Walter, M. B. Kannan, Mater. Lett., 65, 748 (2011). https://doi.org/10.1016/j.matlet.2010.11.051
  7. R. Rettig, S. Virtanen, J. Biomed. Mater. Res. A, 85, 167 (2008).
  8. A. Hanzi, P. Gunde, M. Schinhammer, P. Uggowitzer, Acta Biomater., 5, 162 (2009). https://doi.org/10.1016/j.actbio.2008.07.034
  9. M. B. Kannan, R. Raman, Biomaterials, 29, 2306 (2008). https://doi.org/10.1016/j.biomaterials.2008.02.003
  10. W. C. Kim, J. G. Kim, J. Y. Lee, H. K. Seok, Mater. Lett., 62, 4146 (2008). https://doi.org/10.1016/j.matlet.2008.06.028
  11. M. B. Kannan, Mater. Lett., 64, 739 (2010). https://doi.org/10.1016/j.matlet.2010.01.022
  12. W. Zhou, T. Shen, N. Aung, Corros. Sci., 52, 1035 (2010). https://doi.org/10.1016/j.corsci.2009.11.030
  13. H. Kalb, R. Rzany, B. Hensel, Corros. Sci., 57, 122 (2012). https://doi.org/10.1016/j.corsci.2011.12.026
  14. H. Rad, M. Idris, M. Kadir, S. Farahany, Materials & Design, 33, 88 (2012). https://doi.org/10.1016/j.matdes.2011.06.057
  15. G. Song, A. Atrens, Adv. Eng. Mater., 1, 11 (1999). https://doi.org/10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
  16. E. Ghali, W. Dietzel, K. Kainer, J. Mater. Eng. Perform, 13, 7 (2004). https://doi.org/10.1361/10599490417533
  17. O. Lunder, J. E. Lein, T. K. Aune, K. Nisancioglu, Corrosion, 45, 741 (1998).
  18. G. Song, A. Atrens, X. Wu, B. Zhang, Corros. Sci., 40, 1769 (1998). https://doi.org/10.1016/S0010-938X(98)00078-X
  19. K. S. Shin, S. Cohen, G. Ben-Hamu, D. Elizier, J. Alloy. Compd., 431, 269 (2007). https://doi.org/10.1016/j.jallcom.2006.05.075
  20. W. C. Neil, M. Forsyth, P. C. Howlett, C. R. Hutchinson, B. R. W. Hinton, Corros. Sci., 53, 3299 (2011). https://doi.org/10.1016/j.corsci.2011.06.005
  21. A. E. Coy, F. Viejo, P. Skeldon, G. E. Thompson, Corros. Sci., 52, 3896 (2010). https://doi.org/10.1016/j.corsci.2010.08.006
  22. M. B. Kannan, E. Koc, M. Unal, Mater. Lett., 82, 54 (2012). https://doi.org/10.1016/j.matlet.2012.05.047
  23. R. Walter, M. B. Kannan, J. Biomed. Mater. Res. A, 103, 990 (2014).