DOI QR코드

DOI QR Code

Investigation of the Biodegradable Mechanism of Pure Magnesium Using Electrochemical Impedance Spectroscopy Technique

  • Kim, Woo-Cheol (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Seon-Hong (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Jung-Gu (Department of Advanced Materials Engineering, Sungkyunkwan University) ;
  • Kim, Young-Yul (Department of Orthopaedics, Catholic University Sung-Mo Hospital)
  • Received : 2016.01.24
  • Accepted : 2016.03.01
  • Published : 2016.04.30

Abstract

In this study, electrochemical impedance spectroscopy (EIS) was used to examine the changes in the electrochemical properties of biodegradable pure magnesium implanted into Sprague-Dawley rats for three days. The in vivo test results were compared with those of the in vitro tests carried out in Hank's, dilute saline and simulated body fluid (SBF) solutions. The in vitro corrosion rates were 20~1700 fold higher, as compared to the in vivo corrosion rates. This discrepancy is caused by biomolecule adsorption on the surface, which prevents the transport of water into the magnesium surface on in vivo testing. Among the in vitro experimental conditions, the corrosion rate in SBF solution had the least difference from the in vivo implanted specimen.

Keywords

References

  1. M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Biomaterials, 27, 1728 (2006). https://doi.org/10.1016/j.biomaterials.2005.10.003
  2. J. Y. Lee, G. S. Han, Y. C. Kim, J. Y. Byun, J. I. Jang, H. K. Seok S. J. Yang, Met. Mater. Int., 1, 955 (2009).
  3. F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, F. Feyerabend, Curr. Opin. Solid State Mater. Sci., 12, 63 (2008). https://doi.org/10.1016/j.cossms.2009.04.001
  4. E. Zhang, L. Xu, G. Yu, F. Pan, K. Yang, J. Biomed. Mater. Res. A, 90A, 882 (2009). https://doi.org/10.1002/jbm.a.32132
  5. D. R. Sumner, J. O. Galante, Clin. Orhop. Relat. Res., 274, 202 (1992).
  6. J. Nagels, M. Stokdijk, P. M. Rozing, J. Shoulder Elb. Surg., 12, 35 (2003). https://doi.org/10.1067/mse.2003.22
  7. D. A. Puleo, W. W. Huh, J. Appl. Biomater., 6, 109 (1995). https://doi.org/10.1002/jab.770060205
  8. G. Mani, M. D. Feldman, D. Patel, C. M. Agrawal, Biomaterials, 28, 1689 (2007). https://doi.org/10.1016/j.biomaterials.2006.11.042
  9. Z. Li, X. Gu, S. Lou, Y. Zheng, Biomaterials, 29, 1329 (2008). https://doi.org/10.1016/j.biomaterials.2007.12.021
  10. L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, K. Y. Yang, Biomaterials, 30 1512 (2009). https://doi.org/10.1016/j.biomaterials.2008.12.001
  11. W. D. Mueller, M. L. Nascimento, M. F. Lorenzo, Acta Biomater., 6, 1749 (2010). https://doi.org/10.1016/j.actbio.2009.12.048
  12. Y. Wang, M. Wei, J. Gao, J. Hu, Y. Zhang, Mater. Lett., 62, 2081 (2008). https://doi.org/10.1016/j.matlet.2007.11.020
  13. V. J. Colangelo, N. D. Greene, J. Biomed. Mater. Res., 1, 405 (1967). https://doi.org/10.1002/jbm.820010405
  14. M. G. Fontana, N. D. Greene, Corrosion Engineering, p. 390, McGraw-Hill, New York (1978).
  15. F. Witte, J. Fischer, J. Nellesen, H. A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, Biomaterials, 27, 1013 (2006). https://doi.org/10.1016/j.biomaterials.2005.07.037
  16. E. D. McBride, J. Am. Med. Assoc., 27, 2464 (1938).
  17. J. Verbrugge, La. Press. Med., 23, 460 (1934).
  18. J. T, Scales, G. D. Winter, J. Bone Joint Surg., 41-B, 810 (1959). https://doi.org/10.1302/0301-620X.41B4.810
  19. J. Cohen, J. Wulff, J. Bone Joint Surg., 54-A, 617 (1972).
  20. N. Yuichiro, Y. Takao, K. Yosihiko, O. Masanori, Biomaterials, 10, 420 (1989). https://doi.org/10.1016/0142-9612(89)90134-8
  21. S. R. Sousa, M. A. Barbosa, Clin. Mater., 14, 287 (1993). https://doi.org/10.1016/0267-6605(93)90015-Y
  22. W. C. Kim, J. G. Kim, J. Y. Lee, H. K. Seok, Mater. Lett., 62, 4146 (2008). https://doi.org/10.1016/j.matlet.2008.06.028
  23. K. Tadashi, T. Hiroaki, Biomaterials, 27, 2907 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.017
  24. R. Lindstrom, L. Johansson, G. E. Thompson, P. Skeldon, J. Svensson, Corros. Sci., 46, 1141 (2004). https://doi.org/10.1016/j.corsci.2003.09.010
  25. S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, T. He, Y. Jiang, Y. Bian, Acta Biomater., 6, 626 (2010). https://doi.org/10.1016/j.actbio.2009.06.028
  26. P. Schmutz, V. Guillaumin, R. S. Lillard, J. A. Lillard, G. S. Frankel, J. Electrochem. Soc., 150, B99 (2003). https://doi.org/10.1149/1.1554721
  27. G. Williams, H. N. McMurray, J. Electrochem. Soc., 155, C340 (2008). https://doi.org/10.1149/1.2918900
  28. G. L. Song, A. Atrens, Adv. Eng. Mater., 1, 11 (1999). https://doi.org/10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
  29. N. T. Kirkland, J. Waterman, N. Birbilis, G. Dias, T. B. F. Woodfield, R. M. Hartshorn, M. P. Staiger, J. Mater. Sci. Mater. M., 23, 283 (2012). https://doi.org/10.1007/s10856-011-4517-y
  30. M. Browne, J. Gregson, Biomaterials, 15, 894 (1994). https://doi.org/10.1016/0142-9612(94)90113-9
  31. J. A. Helsen, H. J. Breme, Metals as Biomaterials, p. 102, John Willey & Sons New York (1998).
  32. S. Hiromoto, K. Noda, T. Hanawa, Corros. Sci., 44, 955 (2002). https://doi.org/10.1016/S0010-938X(01)00110-X
  33. C. Liu, Y. Xin, X. Tian, P. K. Chu, J. Mater. Res., 22, 1806 (2007). https://doi.org/10.1557/jmr.2007.0241
  34. C. Liu, Y. J. Wang, R. C. Zeng, X. M. Zhang, W. J. Huang, P. K. Chu, Corros. Sci., 52, 3341 (2010). https://doi.org/10.1016/j.corsci.2010.06.003
  35. I. B. Beech, J. Sunner, Curr. Opin. Biotech., 15, 181 (2004). https://doi.org/10.1016/j.copbio.2004.05.001
  36. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., p. 40, Prentice-Hall, NJ (1996).
  37. J. A. Helsen, H. J. Breme, Metals as Biomaterials, p. 186, John Willey & Sons New York (1998).