• Title/Summary/Keyword: secondary moments

Search Result 26, Processing Time 0.02 seconds

Analysis of the Dynamic Behavior and Lubrication Characteristics of the Piston-Cylinder System in Reciprocating Compressors (왕복동형 압축기 피스톤-실린더계의 동적 거동 및 윤활특성 해석)

  • 김태종
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.291-298
    • /
    • 2002
  • In this study, a numerical analysis f3r the piston secondary dynamics and lubrication characteristics of small refrigeration reciprocating compressors is presented. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic forces and moments as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, and pin location on the stability of the piston, the oil leakage, and friction losses.

Friction Analysis of Spindle Bearings

  • Chang, Hun-Keun;Young Sun;Han, Dong-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.42-48
    • /
    • 2000
  • Friction in bearing exerts an important effect upon power dissipation and heat generation of spindle system. This paper presents frictional moments derived from rotational axis coordinate system of spindle and frictional characteristics to spindle speed A frictional moment of spindle bearings is derived by work-energy method. Differential sliding moments in outer raceway has a major effect upon frictional resistance; spin sliding moments in inner raceway has a secondary effect. As spindle speed increases, also the frictional moments increase. In high-speed region, ceramic ball bearing 몬 smaller frictional moment than steel ball bearing.

  • PDF

Analysis of Frictional Power Loss Due to the Effects of Elastic Deformation in the Piston Skirt Profile (탄성변형을 고려한 피스톤 스커트의 마찰 손실 해석)

  • 조준행;장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.385-396
    • /
    • 2000
  • The secondary motion of piston occurs due to the transient forces and moments in the clearances between piston skirt and cylinder liner The motions are very related to the skirt profile and the magnitude of piston-pin offset. Above all, the elastic deformation is another major effect on the piston secondary motion that has not been considered in the previous researches. In this work, the effects of elastic deformation of the piston skirt on the secondary piston motion are studied for the frictional power loss by using commercial softares, PISDYN and ANSYS.

  • PDF

Numerical Analysis of the Piston Secondary Dynamics in Reciprocating Compressors

  • Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.350-356
    • /
    • 2003
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the variation in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the lubrication characteristics as functions of crank angle under compressor running conditions. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction tosses.

Simplified P-M interaction curve model for reinforced concrete columns exposed to standard fire

  • Lee, Deuck Hang;Cheon, Na-Rae;Kim, Minsu;Lee, Jungmin;Oh, Jae-Yuel;Kim, Kang Su
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.545-553
    • /
    • 2017
  • In the authors' previous study, an axial force-flexural moment (P-M) interaction curve model was proposed to evaluate fire-resisting performances of reinforced concrete (RC) column members. The proposed method appeared to properly consider the axial and flexural strength degradations including the secondary moment effects in RC columns due to fire damage. However, the detailed P-M interaction curve model proposed in the authors' previous study requires somewhat complex computational procedures and iterative calculations, which makes it difficult to be used for practical design in its current form. Thus, the aim of this study was to develop a simplified P-M interaction curve model of RC columns exposed to fire considering the effects of fire damage on the material performances and magnitudes of secondary moments. The simplified P-M interaction model proposed in this study was verified using 66 column fire test results collected from literature, and the verification results showed that the proposed simplified method can provide an adequate analysis accuracy of the failure loads and fire-resisting times of the RC column specimens.

Dynamic Behavior Analysis of Reciprocating Compressor Pistons (왕복동형 압축기 피스톤의 동적 거동 해석)

  • 김태종
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.717-724
    • /
    • 2002
  • In this study, a numerical analysis for the piston secondary dynamics of small refrigeration reciprocating compressors is performed. In general, the length of cylinder in this class of compressors is shortened to diminish the frictional losses of the piston-cylinder system. So, the contacting length between piston and cylinder wall is in variable with the rotating crank angle around the BDC of the reciprocating piston. In the problem formulation of the piston dynamics, the change in bearing length of the piston and all corresponding forces and moments are considered in order to determine the piston trajectory, velocity and acceleration at each step. A Newton-Raphson procedure was employed in solving the secondary dynamic equations of the piston. The developed computer program can be used to calculate the entire piston trajectory and the hydrodynamic force and moment as functions of crank angle under compressor running conditions. The results explored the effects of the radial clearance, lubricant viscosity, length of the cylinder wall, and pin location on the stability of the piston.

Simulation of Capacitively Coupled RF Plasma; Effect of Secondary Electron Emission - Formation of Electron Shock Wave

  • Park, Seung-Kyu;Kim, Heon-Chang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.31-37
    • /
    • 2009
  • This paper presents one and two dimensional simulation results with discontinuous features (shocks) of capacitively coupled rf plasmas. The model consists of the first two and three moments of the Boltzmann equation for the ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The local field and drift-diffusion approximations are not employed, and as a result the charged species conservation equations are hyperbolic in nature. Hyperbolic equations may develop discontinuous solutions even if their initial conditions are smooth. Indeed, in this work, secondary electron emission is shown to produce transient electron shock waves. These shocks form at the boundary between the cathodic sheath (CS) and the quasi-neutral (QN) bulk region. In the CS, the electrons emitted from the electrode are accelerated to supersonic velocities due to the large electric field. On the other hand, in the QN the electric field is not significant and electrons have small directed velocities. Therefore, at the transition between these regions, the electron fluid decelerates from a supersonic to a subsonic velocity in the direction of flow and a jump in the electron velocity develops. The presented numerical results are consistent with both experimental observations and kinetic simulations.

  • PDF

Capacity design considerations for RC frame-wall structures

  • Sullivan, Timothy J.
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.391-410
    • /
    • 2010
  • There are several important considerations that need to be made in the capacity design of RC frame-wall structures. Capacity design forces will be affected by material overstrength, higher mode effects and secondary loadpaths associated with the 3-dimensional structural response. In this paper, the main issues are identified and different means of predicting capacity design forces are reviewed. In order to ensure that RC frame-wall structures perform well it is explained that the prediction of the peak shears and moments that develop in the walls is particularly important and unfortunately very challenging. Through examination of a number of case study structures it is shown that there are a number of serious limitations with capacity design procedures included in current codes. The basis and potential of alternative capacity design procedures available in the literature is reviewed, and a new simplified capacity design possibility is proposed. Comparison with the results of 200 NLTH analyses of frame-wall structures ranging from 4 to 20 storeys suggest that the new method is able to predict wall base shears and mid-height wall moments reliably. However, efforts are also made to highlight the uncertainty with capacity design procedures and emphasise the need for future research on the subject.

A Study of Experiment and Developed Model by Antimony High Energy Implantation in Silicon (실리콘에 고에너지 안티몬이온주입의 실험과 개선된 모델에 관한 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1156-1166
    • /
    • 2004
  • Antimony profiles by MeV implantation are measured by secondary ion mass spectrometry (SIMS) and spreading resistance (SR). The moments of SIMS and simulated profiles are calculated and compared for the exact range in MeV energy. SRIM, DUPEX, ICECREM, and TSUPREM4 simulation programs are used for the calculation of range 1D, 2D. SRIM is a Monte Carlo simulation program and different inter-atomic potentials can be used for the calculation of nuclear stopping power cross-section (Sn) and range moments. Nevertheless, the range parameters were not influenced from nuclear stopping power in MeV. Through the modification of electronic stopping power cross-section (Se), the results of simulation are remarkably improved and matched very well with SIMS data. The values of electronic stopping power are optimized for Sb high energy implantation. For the electrical activation, Sb implanted samples are annealed under $N_2$ and $O_2$ ambient. Finally, Oxidation retard diffusion(ORD) effect of Sb implanted sample are demonstrated by SR measurements and ICECREM simulation.

Field Measurement and Compensation Method of Column Shortening for SRC Columns in 37-story Residential Building (37층 초고층주상복합건물 SRC기둥의 기둥축소량 현장계측 및 보정법)

  • Song, Hwa-Cheol;Do,e Guen-Young;Cho, Hun-hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.145-152
    • /
    • 2005
  • Long-term axial shortening of the vertical elements of tail buildings results in differential movements between two elements and may lead to the additional moments of connection beam and slab elements, and other secondary effects, such as cracks of partitions or curtain walls. Accurate prediction of time-dependent column shortening is essential for tall buildings from both strength and serviceability aspects. The compensation method is different from reinforced concrete and SRC(Steel Reinforced Concrete) members. The SRC columns are usually compensated according to total differential shortening between two vertical elements. In this study, column shortenings of 37-story W building under construction are predicted and compensated. The SRC column shortenings are compared with the actual column shortening by field measurement and the column shortenings are reanalysed and recompensated.