• 제목/요약/키워드: secondary materials

Search Result 1,911, Processing Time 0.027 seconds

Instructional Design in the Cyber Classroom for Secondary Students' Basic English Language Competence

  • Chang, Kyung-Suk;Pae, Jue-Kyoung;Jeon, Young-Joo
    • International Journal of Contents
    • /
    • v.12 no.2
    • /
    • pp.49-57
    • /
    • 2016
  • This paper aims to explore instructional design of a cyber classroom for secondary students' basic English language competence. A paucity of support for low or under achieving students' English learning exists particularly at the secondary level. In order to bridge the gap, there has been demand for online educational resources considered to be an effective tool in improving students' self-directed learning and motivation. This study employs a comprehensive approach to instructional design for the asynchronous cyber classroom with the underlying premise that different learning theories can be applied in a complementary manner to serve different pedagogical purposes best. Gagné's conditions of learning theory, Bruner's constructivist theory, Carroll's minimalist theory, and Vygotsky's social cognitive development theory serve as the basis for designing instruction and selecting appropriate media. The ADDIE model is used to develop online teaching and learning materials. Twenty-five key grammatical features were selected through the analysis of the national curriculum of English, being grouped into five units. Each feature is covered in one cyber asynchronous class. An Integration Class is given at the end of every five classes for synthesis, where students can practice grammatical features in a communicative context. Related theories, pedagogical practices, and practical web-design strategies for cyber Basic English classes are discussed with suggestions for research, practice and policy to support self-directed learning through a cyber class.

Assessing interfacial fracture in orthotropic materials: Implementing the RIS concept with considering the T-stress term under mixed-mode I/II

  • Zahra Khaji;Mahdi Fakoor
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.237-247
    • /
    • 2024
  • Research on interfacial crack formation in orthotropic bi-materials has experienced a notable increase in recent years, driven by growing concerns about structural integrity and reliability. The existence of a crack at the interface of bi-materials has a substantial impact on mechanical strength and can ultimately lead to fracture. The primary objective of this article is to introduce a comprehensive analytical model and establish stress relationships for investigating interfacial crack between two non-identical orthotropic materials with desired crack-fiber angles. In this paper, we present the application of the Interfacial Maximum Tangential Stress (IMTS) criterion, in combination with the Reinforcement Isotropic Solid (RIS) model, to investigate the behavior of interfacial cracks in orthotropic bi-materials under mixed-mode I/II loading conditions. We analytically characterize the stress state at the interfacial crack tip using both Stress Intensity Factors (SIFs) and the T-stress term. Orthotropic materials, due to their anisotropic nature, can exhibit complex crack tip stress fields, making it challenging to predict crack initiation behavior. The secondary objective of this study is to employ the IMTS criterion to predict the crack initiation angle and explore the notable impact of the T-stress term on fracture behavior. Furthermore, we validate the effectiveness of our approach in evaluating Fracture Limit Curves (FLCs) for interfacial cracks in orthotropic bi-materials by comparing our FLCs with relevant experimental data from existing literature.

Anodic Properties of Needle Cokes-derived Graphitic Materials in Lithium Secondary Batteries (침상 코크스(needle cokes)로부터 제조된 흑연질 탄소재료의 리튬 2차전지 음극특성)

  • Park Chul Wan;Oh Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.221-226
    • /
    • 1999
  • Two needle cokes (NC-A and NC-B) that differ in both the texture and impurity content to each other were graphitized at $2000-3000{\circ}C$, and the average particle size, size distribution and surface area were compared after milling. Their anodic properties in Li secondary batteries were also analyzed. Two materials showed a higher degree of graphitization with an increase in the preparation temperature, however, the NC-B series was less graphitized than NC-A due to the presence of impurities and less ordered mosaic texture. The mein particle size of the milled powder was proportional to the degree of graphitization, but the surface area showed the opposite trend. The highly graphitized materials yielded powders of lower uniformity in the size distribution. The discharge capacity of the resulting carbons steadily decreased in the temperature range of 1000 to $2000^{\circ}C$ due to the depletion of carbonaceous interlayers that contain crystal defects. A later increase in the discharge capacity was observed at $>2000^{\circ}C$, which arises from the formation of graphitic interlayers. The milling process gave rise to a sloping discharge curve at >1.0 V, but this was converted to a plateau at <0.25V after a repeated cycling or additional heat-treatment at $1000^{\circ}C$. The discharge at >1.0V likely comes from the disordered surface structure formed during the milling process. The evolution of a plateau at <0.25 V suggests that this disordered structure transforms to a more ordered graphitic one upon a cell cycling or heat-treatment.

Effect of Shear Deformation During Drawing on Inhomogeneous Microstructures and Textures in High Purity Copper Wires After Annealing (고순도 구리 선재의 어닐링 후 불균질 미세조직과 집합조직에 미치는 신선 시 전단 변형의 영향)

  • Park, Hyun;Kim, Sang-Hyeok;Kim, Se-Jong;Lee, Hyo-Jong
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.861-869
    • /
    • 2018
  • To determine the origin of the inhomogeneous microstructure and texture observed in drawn and annealed high purity copper wires, two kinds of drawing process conditions and their influence was investigated. The regular condition, based on a symmetric die, and a condition designed intentionally to produce an inhomogeneous shear deformation using an asymmetric die were employed. The difference in intensity of <111>-<100> distributed texture between the two wires confirmed that the wire drawn under the asymmetric die condition experienced a higher amount of shear deformation. The extensive shear strain in the wire drawn under the asymmetric die condition gave rise to inhomogeneous primary and secondary recrystallization behavior. After annealing at $200^{\circ}C$, grains with <100> texture, which were larger than the surrounding recrystallized grains, were extensively present on one half circle of the wire drawn under the asymmetric die condition, while larger grains with <100> were sparsely observed around the middle region of the wire drawn under the regular condition. Interestingly, the area where the larger grains with <100> texture existed was identical to the area where the high shear strain occurred during drawing in both wires. During annealing at $400^{\circ}C$, grains with <112> texture started to grow abnormally at the center of both wires as a result of secondary recrystallization. After annealing at $900^{\circ}C$ grains with <112> due to secondary recrystallization occupied the entire region of the wire drawn under the regular condition. On the other hand, in the wire drawn under the asymmetric die condition and then annealed at $900^{\circ}C$, the <100> oriented grains as a result of the normal grain growth of the larger <100> grains which were observed after annealing at $200^{\circ}C$, coexisted with the abnormally grown <112> grains. These results indicate that dynamic recrystallization induced by the shear strain during drawing plays an important role in the inhomogeneity of the microstructure and texture of wires after annealing.

A Study of Pre-Service Secondary Science Teacher's Conceptual Understanding on Carbon Neutral: Focused on Eye Tracking System (탄소중립에 관한 중등 과학 예비교사들의 개념 이해 연구 : 시선추적시스템을 중심으로)

  • Younjeong Heo;Shin Han;Hyoungbum Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.2
    • /
    • pp.261-275
    • /
    • 2023
  • The purpose of this study was to analyze the conceptual understanding of carbon neutrality among secondary school science pre-service teachers, as well as to identify gaze patterns in visual materials. For this study, gaze tracking data of 20 pre-service secondary school science teachers were analyzed. Through this, the levels of conceptual understanding of carbon neutrality were categorized for the participants, and differences in gaze patterns were analyzed based on the degree of conceptual understanding of carbon neutrality. The research findings are as follows. First, as a result of performing modeling activities to predict carbon emissions and removals until 2100 using the concept of '2050 carbon neutrality,' 50% of the participants held a conception that carbon emissions would continue to increase. Additionally, 25% of the participants did not properly understand the causal relationship between net carbon dioxide emissions and cumulative concentrations. Second, the gaze movements of the participants regarding visual materials related to carbon neutrality were significantly influenced by the information presented in the text area, and in the case of graphs, the focus was mainly on the data area. Moreover, when visual data with the same function and category were arranged, participants showed the most interest in materials explaining concepts or visual data placed on the left side. This implies a preference for specific positions or orders. Participants with lower levels of conceptual understanding and inadequate grasp of causal relationships among elements exhibited notably reduced concentration and overall gaze flow. These findings suggest that conceptual understanding of carbon neutrality including climate change and natural disaster significantly influences interest in and engagement with visual materials.

Analysis of Pre-service Secondary Science Teachers' Uses of Curriculum Materials in Curriculum Design (중등 예비과학교사의 교육과정 설계에서 교육과정 자료의 활용 방식 분석)

  • Yang, Chanho;Bae, Yujin;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1312-1328
    • /
    • 2013
  • In this study, we investigated preservice secondary science teachers' uses of curriculum materials in curriculum design through a case study. Two preservice science teachers at a college of education in Seoul participated in this study. We interviewed them about their beliefs on teaching and learning prior to their teaching students. We then observed their teaching and collected all of the teaching/learning materials. Semi-structured interviews were also conducted before and after the instructions. Their uses of curriculum materials were systematically analyzed in the aspects of reading, evaluating and adapting curriculum materials. The analyses of the results revealed that their uses of curriculum materials had a significant difference in curriculum design. There was a difference in the way of reading curriculum materials that derived from different perspectives of curriculum reconstruction. The perspectives of curriculum reconstruction also affected the way of adapting curriculum materials. While the 'adding' was an important adaptation in curriculum design with active perspectives, the 'changing' was an important one with passive perspectives. In addition, the degrees of evaluating curriculum materials from the learners' views depended on their beliefs on teaching and learning. It was also connected to qualitative differences of adaptation in 'increasing student control over an activity' and 'increasing teacher control over an activity'. Educational implications of these findings are discussed.

A study on the Active Material FeS2 in Battery Fabricated by Mechanical Alloying

  • Jung Woo-Hyun;Ahn In-Shup;Ahn Hyo-Jun;Bae Sung-Yeal;Sung Tek-Kyoung;Kim Tae-Bum;Kim You-Young
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.179-185
    • /
    • 2005
  • As the electrodes of secondary battery are made with sulfur compounds, excellent electrode system of environmental non-toxicity, high specific energy density and low material cost can be obtained. In this study, the $FeS_2$ fine compound powders for active material in the battery were synthesized by mechanical alloying. Fine Fe-53.5 wt.%S powders of 450 nm of mean size were fabricated by mechanical alloying for 60 hours at the horizontal attritor. As the mechanical alloying time increases, particle size of Fe-53.5 wt.%S was decreased and steady state of Fe-53.5 wt.%S compound powders was obtained at 30 hours. Fe-53.5 wt.%S cathode shows the excellent discharge capacity (1011 mAh/g).

Effect of Primarily Solidified Structure on the Microstructure and the Mechanical Properties of High Cr White Iron (고크롬 백주철의 미세조직과 기계적 특성에 미치는 초기응고 조직의 영향)

  • Jo, Hyun-Wook;Do, Jeong-Hyeon;Jo, Won-Je;Chung, Hyun-Deuk;Lee, Je-Hyun;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.178-184
    • /
    • 2015
  • Due to excellent abrasion resistance the high-chrome white irons are widely used in mining and mineral industries. Minor variation of carbon content in 28% chrome white iron resulted in difference in primarily solidified microstructure. Sub-eutectic (hypoeutectic) composition led to formation of primarily solidified dendrites. Formation of primarily solidified dendrites which were supersaturated with carbon and chrome also caused precipitation of fine secondary carbides that are different from relatively large plate type $M_7C_3$ carbides in the eutectic structure. Small portion of primarily solidified dendrite expected to contribute significantly to the improvement of abrasion resistance of the white iron because the dendrites provided mechanical support to carbides. The relative fraction of primary dendrite increased with reduction of carbon content from the eutectic composition. The increased fraction of primary dendrite increased hardness value of the white irons.

Controlling of the heterogeniously growing GaN polycrystals using a quartz ring in the edge during the HVPE-GaN bulk growth

  • Park, Jae Hwa;Lee, Hee Ae;Park, Cheol Woo;Kang, Hyo Sang;Lee, Joo Hyung;In, Jun-Hyeong;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.439-443
    • /
    • 2018
  • The outstanding characteristics of high quality GaN single crystal substrates make it possible to apply the manufacture of high brightness light emitting diodes and power devices. However, it is very difficult to obtain high quality GaN substrate because the process conditions are hard to control. In order to effectively control the formation of GaN polycrystals during the bulk GaN single crystal growth by the HVPE (hydride vapor phase epitaxy) method, a quartz ring was introduced in the edge of substrate. A variety of evaluating method such as high resolution X-ray diffraction, Raman spectroscopy and photoluminescence was used in order to measure the effectiveness of the quartz ring. A secondary ion mass spectroscopy was also used for evaluating the variations of impurity concentration in the resulting GaN single crystal. Through the detailed investigations, we could confirm that the introduction of a quartz ring during the GaN single crystal growth process using HVPE is a very effective strategy to obtain a high quality GaN single crystal.

Design and Implementation of Mathematics Textbooks in Support of Effective Teaching for Secondary Schools: A Chinese Case

  • PENG, Aihui;SONG, Naiqing
    • Research in Mathematical Education
    • /
    • v.19 no.4
    • /
    • pp.247-265
    • /
    • 2015
  • Mathematics textbook plays a significant role in shaping students' learning of mathematics. Logic, rigor and abstraction as typical features of the formalization of mathematics, dominate mathematics textbooks around the world, which is regarded as one of the important origins of students' learning difficulties in mathematics. An innovative series of Chinese mathematic textbooks is presented in this paper. Supported by the supplementary materials excerpts from the textbooks, it gives a comprehensive theoretical analysis of the principles of design and implementation of this series of mathematics textbooks. The effectiveness of this series of textbooks is demonstrated by student achievement and secondary research data. It shows that series of Chinese mathematic textbooks has largely decreased students' learning difficulties in mathematics and enhance classroom teaching efficiency. It suggests that prioritizing the essence of mathematics and reducing abstraction is an important notion for mathematics textbook design and implementation.