• Title/Summary/Keyword: secondary aqueous cell

Search Result 10, Processing Time 0.027 seconds

Development and Application of Electrode for a New Secondary Aqueous Cell (새로운 수용성 2차 전지용 전극의 개발과 응용)

  • Hwang, Kum-Sho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.2
    • /
    • pp.165-170
    • /
    • 2005
  • Al-Zn alloy/$MnO_2$, seawater cell was considered as a primary aqueous cell with an average voltage range from 1.0 to 1.1V, and the electrolyte of seawater was uptaken into the cell. Eventually, the capacity of its usage will be used for long-term. However, the more use of this cell, the higher corrosion phenomenon of the electrode occurred. Due to its corrosion phenomenon, one main default has been observed with gradual decrease during a discharge process. In this research, a common-used active material for anode was $LiNiO_2$. An active material for cathode, $Zn_{X}FeS_2$ was synthesized in high temperature by uptaken a small amount of 1.3 wt% of ZnS into $FeS_2$, one of the transition-metal dichalcogenides in high temperature. Consequently, based on their usages shown above, this secondary aqueous lithium cell could be more developed. This cell was shown as remarkable charge/discharge performance during the charge/discharge processes. This cathode with active material was given a considerable efficiency of inserting $Li^+$ ions. Moreever, in accordance with the characteristic of the crystal structure for $Zn_{x}FeS_2$, a small amount of ZnS was added which made it possible to reduce prominently velocity of corrosion during the charge/discharge cycle. By applying those merits, Al-Zn alloy/$MnO_2$ seawater cell will be used as a fundamental data in order to transform into a secondary aqueous cell.

Survey on rechargeable battery of MnO2-Zn using aqueous solution (수용성 전해질을 이용한 이산화망간 2차 전지에 대한 고찰)

  • Park, S.J.;Shin, H.S.;Kim, Y.C.;Oh, C.S.
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.245-250
    • /
    • 2016
  • Manganese dioxide is the material which has a good characteristic property for a secondary cell. We have surveyed on rechargeable battery of zink-manganese dioxide using aqueous solution and we also surveyed on redox reversibility of zink-manganese dioxide for checking up possibility for a secondary cell. We have found out to be active for charging and discharging of those.

On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries

  • Park, Chul-Wan
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.180-183
    • /
    • 2011
  • Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe $Li^+$ intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/$Li^+$) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) $Li^+$ conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the $Li^+$ transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of $Li^+$ in the graphite lattice.

Bacterial Effects on Geochemical Behavior of Elements : An Overview on Recent Geomicrobiological Issues (원소의 지구화학적 거동에 미치는 박테리아의 영향 : 지구미생물학의 최근 연구 동향)

  • 이종운;전효택
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.353-365
    • /
    • 2000
  • After their first appearance on Earth, bacteria have exerted significant influence on geochemical behavior of elements. Numerous evidence of their control on geochemistry through geologic history has been observed in a variety of natural environments. They have mediated weathering rate, formation of secondary minerals, redox transformation of metals and metalloids, and thus global cycling of elements. Such ability of bacteria receives so considerable attention from microbiologists, mineralogists, geologists, soil scientists, limnologists, oceanographers, and atmospheric scientists as well as geochemists that a new and interdisciplinary field of research called 'geomicrobiology' is currently expanding. Some recent subjects of geomicrobiology which are studied extensively are as follows: 1) Functional groups distributed on bacterial cell walls adsorb dissolved cations onto cell surfaces by electrostatic surface complexation, which is followed by hydrous mineral formation. 2) Dissimilatory metal reducing bacteria conserve energy to support growth by oxidation of organic matter coupled to reduction of some oxidized metals and/or metalloids. They can be effectively used in remediating environments contaminated with U, As, Se, and Cr. 3) Bacteria increase the rate of mineral dissolution by excreting proton and ligands such as organic acids into aqueous system. 4) Thorough investigation on the effects of biofilm on geochemical processes is needed, because most bacteria are adsorbed on solid substrates and form biofilms in natural settings.

  • PDF

The Effects of Sodium Doping on the Electrical Properties of the Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells (용액법을 이용한 나트륨 도핑에 따른 Cu2ZnSnSe4 (CZTSSe) 박막의 합성 및 특성 평가)

  • Shim, Hongjae;Kim, Jihun;Gang, MyungGil;Kim, Jinhyeok
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.564-569
    • /
    • 2018
  • $Cu_2ZnSn(S,Se)_4$ (CZTSSe) films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu(CZT) precursor films. The precursor was dried in a capped state with aqueous NaOH solution. The CZT precursor films were sulfo-selenized in the S + Se vapor atmosphere. Sodium was doped during the sulfo-selenization treatment. The effect of sodium doping on the structural and electrical properties of the CZTSSe thin films were studied using FE-SEM(field-emission scanning electron microscopy), XRD(X-ray diffraction), XRF(X-ray fluorescence spectroscopy), dark current, SIMS(secondary ion mass spectrometry), conversion efficiency. The XRD, XRF, FE-SEM, Dark current, SIMS and cell efficiency results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the sodium doping. Further detailed analysis and discussion for effect of sodium doping on the properties CZTSSe thin films will be discussed.

Syntheses and Arene Transport Studies of Water Soluble Aminomethylcalixarene (수용성 아미노메틸칼릭스아렌의 합성 및 방향족 물질의 통과실험 연구)

  • Kye Chung Nam;Dae Soon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.6
    • /
    • pp.933-940
    • /
    • 1992
  • Calix[6]arene react with formaldehyde and secondary amines to yields water soluble Mannich bases which can be converted to the corresponding quaternary salts. Treatment of the quaternary salts with a nucleophile such as cyano, ethoxy, and hydride yields p-substituted calix[6]arenes. Calix[8]arene too react with formaldehyde and diallyl amine to yield a water soluble Mannich base. The transport of neutral arenes through an aqueous phase along a concentration gradient mediated by those of water soluble calixarenes as molecular carrier was studied in a U-type cell. Naphthalene, anthracene, pyrene, and fluoranthene are tested as a neutral solid guest compounds for the transport experiment.

  • PDF

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • Park, Je-Sik;Lee, Cheol-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

Preparation and Electrochemical Properties of Pr1-x (Sr, Ca)xCoO3 Cathode Materials for Zinc Air Batteries (아연공기전지용 Pr1-x (Sr, Ca)xCoO3 양극촉매 제조 및 전기화학적 특성)

  • Heo, Sang-Hun;Eom, Seung-Wook;Kim, Hyun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.342-348
    • /
    • 2009
  • Zn/Air secondary batteries are high energy density type and environment-friendly. Also, they have safer properties than batteries of other type by low manufacturing cost and using the electrolyte solution. But, they have a weak concerning large output discharge. Oxygen evolution reaction(OER) and oxgen reduction reaction(ORR) in aqueous solution make a result of a decrease of cell efficiency and life span. Therefore, to minimize the voltage drop from between OCV and charge/discharge voltage is key point. The problem should be solved through developing catalysts of high efficiency. In this study, we synthesized $Pr_{1-x}(Sr,\;Ca)_x\;CoO_3$ powders by citric method and then measured physical characteristics of each powder by XRD, SEM, TGA etc. We examined its electrochemical properties by the cathodic polarization, anodic polarization and cyclic voltammogram. We achieved results that new catalysts showed better performances than existing $La_{1-x}Sr_xCoO_3$, $La_{1-x}Ca_xCoO_3$, ect. catalysts prepared in our lab.

The Synthesis of LiMn$_2$O$_4$by sol-gel method and properties as electrode materials for lithium secondary battery (Sol-Gel 법에 의한 LiMn$_2$O$_4$의 합성 및 리튬이차전지용 전극물질로의 특성)

  • 이진식;박용성;우제완
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.219-225
    • /
    • 2000
  • The spinel structured $LiMn_2O_4$was obtained by two consecutive heat treatment on xerogel; the first heat treatment was at $150^{\circ}C$ and the second at $350^{\circ}C$ was obtained by sol-gel process using an aqueous solution of lithium hydroxide and manganese acetate. The synthesized $LiMn_2O_4$ by the sol-gel process showed a discharge capacity of 88~56 mAh/g after 15 cycles in Li/lM $LiClO_4$(in PC)/$LiMn_2O_4$at a current density of 0.25 mA/$\textrm{cm}^2$ and the voltage ranged 3.5 V to 4.3 V. For the second heat treatment above $350^{\circ}C$, $Mn_2O_3$was formed as a by-product during the synthesis of $LiMn_2O_4$. The heat treatment at $500^{\circ}C$, for example, showed a lower discharge capacity 81~47 mAh/g, after the 15 charge/discharge cycles. The lower capacity was due to the increment of $Mn^{3+}$ ion and this phenomenon was in agreement with the Jahn-Teller distortion.

  • PDF