• 제목/요약/키워드: secondary aqueous cell

검색결과 10건 처리시간 0.022초

새로운 수용성 2차 전지용 전극의 개발과 응용 (Development and Application of Electrode for a New Secondary Aqueous Cell)

  • 황금소
    • 수산해양기술연구
    • /
    • 제41권2호
    • /
    • pp.165-170
    • /
    • 2005
  • Al-Zn alloy/$MnO_2$, seawater cell was considered as a primary aqueous cell with an average voltage range from 1.0 to 1.1V, and the electrolyte of seawater was uptaken into the cell. Eventually, the capacity of its usage will be used for long-term. However, the more use of this cell, the higher corrosion phenomenon of the electrode occurred. Due to its corrosion phenomenon, one main default has been observed with gradual decrease during a discharge process. In this research, a common-used active material for anode was $LiNiO_2$. An active material for cathode, $Zn_{X}FeS_2$ was synthesized in high temperature by uptaken a small amount of 1.3 wt% of ZnS into $FeS_2$, one of the transition-metal dichalcogenides in high temperature. Consequently, based on their usages shown above, this secondary aqueous lithium cell could be more developed. This cell was shown as remarkable charge/discharge performance during the charge/discharge processes. This cathode with active material was given a considerable efficiency of inserting $Li^+$ ions. Moreever, in accordance with the characteristic of the crystal structure for $Zn_{x}FeS_2$, a small amount of ZnS was added which made it possible to reduce prominently velocity of corrosion during the charge/discharge cycle. By applying those merits, Al-Zn alloy/$MnO_2$ seawater cell will be used as a fundamental data in order to transform into a secondary aqueous cell.

수용성 전해질을 이용한 이산화망간 2차 전지에 대한 고찰 (Survey on rechargeable battery of MnO2-Zn using aqueous solution)

  • 박석준;신희성;김영철;오창섭
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.245-250
    • /
    • 2016
  • 이산화망간은 전지의 활성물질로서 우수한 특성을 가지고 있고 가격도 저렴한 재료로서 각종 1차전지에 사용되어왔다. 그러나 이산화망간을 이용한 2차 전지에 대한 연구는 그렇게 많지 않다. 최근 이산화망간의 충전가역성에 관하여 황산아연을 전해질로 하는 이산화망간 아연전지가 재충전이 가능하다는 보고가 있다. 여기서는 이산화망간이 황산아연수용액 중에서 가역적으로 충전방전이 가능한 것을 토대로 2차전지로서의 가능성에 대해 서술한다.

On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries

  • Park, Chul-Wan
    • Carbon letters
    • /
    • 제12권3호
    • /
    • pp.180-183
    • /
    • 2011
  • Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe $Li^+$ intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/$Li^+$) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) $Li^+$ conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the $Li^+$ transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of $Li^+$ in the graphite lattice.

원소의 지구화학적 거동에 미치는 박테리아의 영향 : 지구미생물학의 최근 연구 동향 (Bacterial Effects on Geochemical Behavior of Elements : An Overview on Recent Geomicrobiological Issues)

  • 이종운;전효택
    • 자원환경지질
    • /
    • 제33권5호
    • /
    • pp.353-365
    • /
    • 2000
  • After their first appearance on Earth, bacteria have exerted significant influence on geochemical behavior of elements. Numerous evidence of their control on geochemistry through geologic history has been observed in a variety of natural environments. They have mediated weathering rate, formation of secondary minerals, redox transformation of metals and metalloids, and thus global cycling of elements. Such ability of bacteria receives so considerable attention from microbiologists, mineralogists, geologists, soil scientists, limnologists, oceanographers, and atmospheric scientists as well as geochemists that a new and interdisciplinary field of research called 'geomicrobiology' is currently expanding. Some recent subjects of geomicrobiology which are studied extensively are as follows: 1) Functional groups distributed on bacterial cell walls adsorb dissolved cations onto cell surfaces by electrostatic surface complexation, which is followed by hydrous mineral formation. 2) Dissimilatory metal reducing bacteria conserve energy to support growth by oxidation of organic matter coupled to reduction of some oxidized metals and/or metalloids. They can be effectively used in remediating environments contaminated with U, As, Se, and Cr. 3) Bacteria increase the rate of mineral dissolution by excreting proton and ligands such as organic acids into aqueous system. 4) Thorough investigation on the effects of biofilm on geochemical processes is needed, because most bacteria are adsorbed on solid substrates and form biofilms in natural settings.

  • PDF

용액법을 이용한 나트륨 도핑에 따른 Cu2ZnSnSe4 (CZTSSe) 박막의 합성 및 특성 평가 (The Effects of Sodium Doping on the Electrical Properties of the Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells)

  • 심홍재;김지훈;강명길;김진혁
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.564-569
    • /
    • 2018
  • $Cu_2ZnSn(S,Se)_4$ (CZTSSe) films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu(CZT) precursor films. The precursor was dried in a capped state with aqueous NaOH solution. The CZT precursor films were sulfo-selenized in the S + Se vapor atmosphere. Sodium was doped during the sulfo-selenization treatment. The effect of sodium doping on the structural and electrical properties of the CZTSSe thin films were studied using FE-SEM(field-emission scanning electron microscopy), XRD(X-ray diffraction), XRF(X-ray fluorescence spectroscopy), dark current, SIMS(secondary ion mass spectrometry), conversion efficiency. The XRD, XRF, FE-SEM, Dark current, SIMS and cell efficiency results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the sodium doping. Further detailed analysis and discussion for effect of sodium doping on the properties CZTSSe thin films will be discussed.

수용성 아미노메틸칼릭스아렌의 합성 및 방향족 물질의 통과실험 연구 (Syntheses and Arene Transport Studies of Water Soluble Aminomethylcalixarene)

  • 남계춘;김대순
    • 대한화학회지
    • /
    • 제36권6호
    • /
    • pp.933-940
    • /
    • 1992
  • Calix[6]arene을 포름알데히드와 이차아민과 반응시키면 물에 녹는 칼릭세린 염기가 얻어진다. 이를 메틸요오드로 처리하여 암모늄 염을 만들고 다양한 친핵성 물질과 반응시키면 칼릭세린의 파라위치에 작용기가 포함된 calix[6]arene이 얻어진다. Calix[6]arene도 포름알데히드와 이차의 아릴아민과 반응시켜 물에 녹는 칼릭세린 아민을 만들었다. 이렇게 합성된 칼릭세린중 물에 녹는 아민과 산기가 포함된 calix[6]arene과 calix[8]arene을 운반체로 이용하여 중성의 방향족 물질들을 통과시키는 연구를 U 형태의 유리관을 이용하여 수행하였다. 방향족 기질들로는 나프탈렌, 안트라센, 파이렌, 풀우란텐 등의 고체물질을 사용하였다.

  • PDF

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 1998년도 가을 학술발표회 프로그램
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • 박제식;이철경
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

아연공기전지용 Pr1-x (Sr, Ca)xCoO3 양극촉매 제조 및 전기화학적 특성 (Preparation and Electrochemical Properties of Pr1-x (Sr, Ca)xCoO3 Cathode Materials for Zinc Air Batteries)

  • 허상훈;엄승욱;김현수
    • 전기화학회지
    • /
    • 제12권4호
    • /
    • pp.342-348
    • /
    • 2009
  • 아연공기이차전지는 고에너지밀도형이고 환경친화적이며 낮은 제조단가와 수용액계의 전해질 사용으로 다른 종류의 전지에 비해 매우 안전한 특성을 가진다. 하지만, 고출력 방전에 취약한 단점이 있으며 수용액에서 산소발생 및 환원반응은 매우 높은 과전압 하에서 일어나 전지효율의 감소 및 수명단축의 결과를 가져온다. 따라서 충 방전이 개시되면서 초기 OCV로부터 전압강하를 최소화 시키는 것이 성능 개선의 관건인데 이는 고성능의 촉매개발로 해결해야 한다. 본 연구에서는구연산법을 이용하여 $Pr_{1-x}(Sr,\;Ca)_x\;CoO_3$분말을 합성하고 각 분말들의 물성을 XRD, SEM, TGA 등을 이용하여 측정하고, 이를 이용한 양극의 환원 및 산화분극과 순환전압전류 등의 전기 화학적 특성을 평가하여 기존에 연구했던 $La_{1-x}Sr_xCoO_3$, $La_{1-x}CaxCoO_3$ 등의 촉매 성능보다 향상된 결과를 얻을 수있었다.

Sol-Gel 법에 의한 LiMn$_2$O$_4$의 합성 및 리튬이차전지용 전극물질로의 특성 (The Synthesis of LiMn$_2$O$_4$by sol-gel method and properties as electrode materials for lithium secondary battery)

  • 이진식;박용성;우제완
    • 한국결정성장학회지
    • /
    • 제10권3호
    • /
    • pp.219-225
    • /
    • 2000
  • 스피넬형의 $LiMn_2$O$_4$는 출발물질로 LiOH와 Mn($CH_3$COO)$_2$.$4H_2$O를 사용하여 졸-겔법으로 합성한 xerogel을 $150^{\circ}C$로 1차 열처리한 후 $350^{\circ}C$로 2차 열처리하여 합성하였다. 그러나 $350^{\circ}C$ 이상으로 열처리할 경우 $Mn_2O_3$가 생겼으며, 이로 인해서 Li/lM $LiClO_4$(in PC)$LiMn_2O_4$cell을 구성하여 0.25 mA/$\textrm{cm}^2$의 전류밀도로 충.방전 실험을 한 결과 $350^{\circ}C$에서 열처리한 것은 15 cycle후에 88 mAh/g에서 56 mAh/g으로 35.7%의 용량감소가 나타났으나 $500^{\circ}C$에서 열처리한 것은 89 mAh/g에 51 mAh/g으로 42.5%의 용량감소가 나타났으며 이는 $Mn^{3+}$ 의 증가로 인한 Jahn-Teller distortion의 결과로 볼 수 있다.

  • PDF