• Title/Summary/Keyword: second projection method

Search Result 114, Processing Time 0.021 seconds

AN EFFICIENT IMPLEMENTATION OF BDM MIXED METHODS FOR SECOND ORDER ELLIPTIC PROBLEMS

  • Kim, J.H.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.95-111
    • /
    • 2003
  • BDM mixed methods are obtained for a good approximation of velocity for flow equations. In this paper, we study an implementation issue of solving the algebraic system arising from the BDM mixed finite elements. First we discuss post-processing based on the use of Lagrange multipliers to enforce interelement continuity. Furthermore, we establish an equivalence between given mixed methods and projection finite element methods developed by Chen. Finally, we present the implementation of the first order BDM on rectangular grids and show it is as simple as solving the pressure equation.

  • PDF

Sparse-View CT Image Recovery Using Two-Step Iterative Shrinkage-Thresholding Algorithm

  • Chae, Byung Gyu;Lee, Sooyeul
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1251-1258
    • /
    • 2015
  • We investigate an image recovery method for sparse-view computed tomography (CT) using an iterative shrinkage algorithm based on a second-order approach. The two-step iterative shrinkage-thresholding (TwIST) algorithm including a total variation regularization technique is elucidated to be more robust than other first-order methods; it enables a perfect restoration of an original image even if given only a few projection views of a parallel-beam geometry. We find that the incoherency of a projection system matrix in CT geometry sufficiently satisfies the exact reconstruction principle even when the matrix itself has a large condition number. Image reconstruction from fan-beam CT can be well carried out, but the retrieval performance is very low when compared to a parallel-beam geometry. This is considered to be due to the matrix complexity of the projection geometry. We also evaluate the image retrieval performance of the TwIST algorithm -sing measured projection data.

Comparing Solution Methods for a Basic RBC Model

  • Joo, Semin
    • Management Science and Financial Engineering
    • /
    • v.21 no.2
    • /
    • pp.25-30
    • /
    • 2015
  • This short article compares different solution methods for a basic RBC model (Hansen, 1985). We solve and simulate the model using two main algorithms: the methods of perturbation and projection, respectively. One novelty is that we offer a type of the hybrid method: we compute easily a second-order approximation to decision rules and use that approximation as an initial guess for finding Chebyshev polynomials. We also find that the second-order perturbation method is most competitive in terms of accuracy for standard RBC model.

Adaptive Histogram Projection And Detail Enhancement for the Visualization of High Dynamic Range Infrared Images

  • Lee, Dong-Seok;Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2016
  • In this paper, we propose an adaptive histogram projection technique for dynamic range compression and an efficient detail enhancement method which is enhancing strong edge while reducing noise. First, The high dynamic range image is divided into low-pass component and high-pass component by applying 'guided image filtering'. After applying 'guided filter' to high dynamic range image, second, the low-pass component of the image is compressed into 8-bit with the adaptive histogram projection technique which is using global standard deviation value of whole image. Third, the high-pass component of the image adaptively reduces noise and intensifies the strong edges using standard deviation value in local path of the guided filter. Lastly, the monitor display image is summed up with the compressed low-pass component and the edge-intensified high-pass component. At the end of this paper, the experimental result show that the suggested technique can be applied properly to the IR images of various scenes.

Performance Analysis of Perturbation-based Privacy Preserving Techniques: An Experimental Perspective

  • Ritu Ratra;Preeti Gulia;Nasib Singh Gill
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.81-88
    • /
    • 2023
  • In the present scenario, enormous amounts of data are produced every second. These data also contain private information from sources including media platforms, the banking sector, finance, healthcare, and criminal histories. Data mining is a method for looking through and analyzing massive volumes of data to find usable information. Preserving personal data during data mining has become difficult, thus privacy-preserving data mining (PPDM) is used to do so. Data perturbation is one of the several tactics used by the PPDM data privacy protection mechanism. In Perturbation, datasets are perturbed in order to preserve personal information. Both data accuracy and data privacy are addressed by it. This paper will explore and compare several perturbation strategies that may be used to protect data privacy. For this experiment, two perturbation techniques based on random projection and principal component analysis were used. These techniques include Improved Random Projection Perturbation (IRPP) and Enhanced Principal Component Analysis based Technique (EPCAT). The Naive Bayes classification algorithm is used for data mining approaches. These methods are employed to assess the precision, run time, and accuracy of the experimental results. The best perturbation method in the Nave-Bayes classification is determined to be a random projection-based technique (IRPP) for both the cardiovascular and hypothyroid datasets.

ERROR ESTIMATES FOR THE FULLY DISCRETE STABILIZED GAUGE-UZAWA METHOD -PART I: THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • v.21 no.2
    • /
    • pp.125-150
    • /
    • 2013
  • The stabilized Gauge-Uzawa method (SGUM), which is a second order projection type algorithm to solve the time-dependent Navier-Stokes equations, has been newly constructed in 2013 Pyo's paper. The accuracy of SGUM has been proved only for time discrete scheme in the same paper, but it is crucial to study for fully discrete scheme, because the numerical errors depend on discretizations for both space and time, and because discrete spaces between velocity and pressure can not be chosen arbitrary. In this paper, we find out properties of the fully discrete SGUM and estimate its errors and stability to solve the evolution Navier-Stokes equations. The main difficulty in this estimation arises from losing some cancellation laws due to failing divergence free condition of the discrete velocity function. This result will be extended to Boussinesq equations in the continuous research (part II) and is essential in the study of part II.

Text Location and Extraction for Business Cards Using Stroke Width Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.

Experimental Study for Innervation of Scalp and Face with WGA-HRP Method (WGA-HRP법을 이용한 두피와 안면부의 신경지배에 관한 연구)

  • Kang, Jun-Goo
    • The Korean Journal of Pain
    • /
    • v.7 no.2
    • /
    • pp.238-241
    • /
    • 1994
  • Aim of this study was to discover the projection area of the first cervical spinal nerve. Subcutaneous injection of wheat germ agglutinin-horseradish peroxidase(WGA-HRP) was done at five points of young dogs scalp and face. After two days of survival time, animals were sacrificed by perfusion through the left ventricle of the heart. Trigeminal ganglion, first and second cervical dorsal root ganglion, superior cervical ganglion, middle cervical ganglion and stellate ganglion were removed. Projection area of wheat germ agglutinin-horseradish peroxidase in vestigated into above ganglions. Projection into the first cervical dorsal root ganglion and stellate ganglion was not found. This experiment is deemed valuable for the study of neuronal connection on the central nervous system.

  • PDF

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.

CONVERGENCE RATE FOR LOWER BOUNDS TO SELF-ADJOINT OPERATORS

  • Lee, Gyou-Bong
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.513-525
    • /
    • 1996
  • Let the operator A be self-adjoint with domain, Dom(A), dense in $(H)$ which is a separable Hilbert space with norm $\left\$\mid$ \cdot \right\$\mid$$ and inner product $<\cdot, \cdot>$.

  • PDF