• Title/Summary/Keyword: second differential

Search Result 924, Processing Time 0.028 seconds

OSCILLATION CRITERIA OF DIFFERENTIAL EQUATIONS OF SECOND ORDER

  • Kim, Rae Joong
    • Korean Journal of Mathematics
    • /
    • v.19 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • We give sufficient conditions that the homogeneous differential equations : for $t{\geq}t_0$(> 0), $$x^{{\prime}{\prime}}(t)+q(t)x^{\prime}(t)+p(t)x(t)=0,\\x^{{\prime}{\prime}}(t)+q(t)x^{\prime}(t)+F(t,x({\phi}(t)))=0$$, are oscillatory where $0{\leq}{\phi}(t)$, 0 < ${\phi}^{\prime}(t)$, $\lim_{t\to{\infty}}{\phi}(t)={\infty}$. and $F(t,u){\cdot}sgn$ $u{\leq}p(t)|u|$. We obtain comparison theorems.

THE APPLICATION OF STOCHASTIC ANALYSIS TO COUNTABLE ALLELIC DIFFUSION MODEL

  • Choi, Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.2
    • /
    • pp.337-345
    • /
    • 2004
  • In allelic model X = ($\chi_1\chi$_2ㆍㆍㆍ, \chi_d$), M_f(t) = f(p(t)) - ${{\int^t}_0}\;Lf(p(t))ds$ is a P-martingale for diffusion operator L under the certain conditions. In this note, we can show existence and uniqueness of solution for stochastic differential equation and martingale problem associated with mean vector. Also, we examine that if the operator related to this martingale problem is connected with Markov processes under certain circumstance, then this operator must satisfy the maximum principle.

Design of nonlinear variable structure controller using differential geometric methods (미분기하학 방법을 이용한 비선형 가변구조 제어기 설계)

  • 함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1227-1233
    • /
    • 1993
  • In this paper we present the differential geometric approach for the analysis and design of sliding modes in nonlinear variable structure feedback systems. We also design the robust controller for the nonlinear system using variable structure control theory on the basis of differential geometric methods and feedback linearization applying Min-Max control based on the Lyapunov second method. The robustness against parameter uncertainties for robot manipulators with flexible joint is considered. Simulation results are presented and show the advantage of the proposed nonlinear control method.

  • PDF

A Discriminating Algorithm between Magnetizing Inrush and Internal Faults of Transformers Using Difference of a differential current (차동전류의 변화율을 이용한 변압기의 여자돌입과 내부사고 구분 알고리즘)

  • Kang, Y.C.;Lee, B.E.;Yun, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.171-173
    • /
    • 2000
  • This paper presents a discriminating algorithm between magnetizing inrush and internal faults of transformers using difference of a differential current. Incase of inrush, change of magnetizing inductance repeats. Thus, second difference of differential current periodically shows pulse while periodic pulse is not represented in case of internal winding fault. The proposed algorithm is suitable irrespective of the amount of remanent flux.

  • PDF

EXISTENCE OF THREE SOLUTIONS OF NON-HOMOGENEOUS BVPS FOR SINGULAR DIFFERENTIAL SYSTEMS WITH LAPLACIAN OPERATORS

  • Yang, Xiaohui;Liu, Yuji
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.187-220
    • /
    • 2016
  • This paper is concerned with a kind of non-homogeneous boundary value problems for singular second order differential systems with Laplacian operators. Using multiple fixed point theorems, sufficient conditions to guarantee the existence of at least three solutions of this kind of boundary value problems are established. An example is presented to illustrate the main results.

TWO NECESSARY AND SUFFICIENT CONDITIONS FOR THE CLASSICAL ORTHOGONAL POLYNOMIALS

  • Park, Suk-Bong
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.581-588
    • /
    • 2007
  • We reconsider the classical orthogonal polynomials which are solutions to a second order differential equation of the form $$l_2(x)y'(x)+l_1(x)y'(x)={\lambda}_ny(x)$$. We investigate two characterization theorems of F. Marcellan et all and K.H.Kwon et al. which gave necessary and sufficient conditions on $l_1(x)\;and\;l_2(x)$ for the above differential equation to have orthogonal polynomial solutions. The purpose of this paper is to give a proof that each result in their papers respectively is equivalent.

A REFINEMENT OF LYAPUNOV-TYPE INEQUALITY FOR A CLASS OF NONLINEAR SYSTEMS

  • Kim, Yong-In
    • The Pure and Applied Mathematics
    • /
    • v.18 no.4
    • /
    • pp.329-336
    • /
    • 2011
  • Some new Lyapunov-type inequalities for a class of nonlinear differential systems, which are natural refinements and generalizations of the well-known Lyapunov inequality for linear second order differential equations, are given. The results of this paper cover some previous results on this topic.

THE GROWTH OF SOLUTIONS OF COMPLEX DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENT HAVING FINITE DEFICIENT VALUE

  • Zhang, Guowei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1495-1506
    • /
    • 2021
  • The growth of solutions of second order complex differential equations f" + A(z)f' + B(z)f = 0 with transcendental entire coefficients is considered. Assuming that A(z) has a finite deficient value and that B(z) has either Fabry gaps or a multiply connected Fatou component, it follows that all solutions are of infinite order of growth.

An efficient parallel solution algorithm on the linear second-order partial differential equations with large sparse matrix being based on the block cyclic reduction technique (Block Cyclic Reduction 기법에 의한 대형 Sparse Matrix 선형 2계편미분방정식의 효율적인 병렬 해 알고리즘)

  • 이병홍;김정선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.553-564
    • /
    • 1990
  • The co-efficient matrix of linear second-order partial differential equations in the general form is partitioned with (n-1)x(n-1) submartices and is transformed into the block tridiagonal system. Then the cyclic odd-even reduction technique is applied to this system with the large-grain data granularity and the block cyclic reduction algorithm to solve unknown vectors of this system is created. But this block cyclic reduction technique is not suitable for the parallel processing system because of its parallelism chanigng at every computing stages. So a new algorithm for solving linear second-order partical differential equations is presentes by the block cyclic reduction technique which is modified in order to keep its parallelism constant, and to reduce gteatly its execution time. Both of these algoriths are compared and studied.

  • PDF