• Title/Summary/Keyword: second differential

Search Result 924, Processing Time 0.029 seconds

MIXED BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENTIAL EQUATIONS WITH DIFFERENT DEVIATED ARGUMENTS

  • Zhang, Lihong;Wang, Guotao;Song, Guangxing
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.191-200
    • /
    • 2011
  • This paper deals with second order differential equations with different deviated arguments ${\alpha}$(t) and ${\beta}$(t, ${\mu}$(t)). We investigate the existence of solutions of such problems with nonlinear mixed boundary conditions. To obtain corresponding results we apply the monotone iterative technique and the lower-upper solutions method. Two examples demonstrate the application of our results.

SWEEP METHOD IN ANALYSIS OPTIMAL CONTROL FOR RENDEZ-VOUS PROBLEMS

  • Popescu, Mihai
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.243-256
    • /
    • 2007
  • This paper deals with determining the sufficient conditions of minimum for the class of problems in which the necessary conditions of optimum are satisfied in the strengthened form Legendre-Clebsch. To this paper, we shall use the sweep method which analysis the conditions of existence of the conjugated points on the optimal trajectory. The study we have done evaluates the command variation on the neighboring optimal trajectory. The sufficient conditions of minimum are obtained by imposing the positivity of the second variation. The results that this method offers are applied to the problem o the orbital rendez-vous for the linear case of the equations of movement.

Role of contrast-enhanced harmonic endoscopic ultrasonography (EUS) and EUS elastography in pancreatic lesions

  • Yasunobu Yamashita;Masayuki Kitano
    • Clinical Endoscopy
    • /
    • v.57 no.2
    • /
    • pp.164-174
    • /
    • 2024
  • Pancreatic cancers have a poor prognosis, and their incident rates have risen. Endoscopic ultrasonography (EUS) is an efficient and reliable diagnostic modality for pancreatic lesions, providing high spatial resolution. However, while EUS helps to detect minor pancreatic lesions, nearly all solid pancreatic lesions are hypoechoic, which creates difficulty in making differential diagnoses of pancreatic lesions. When diagnosing pancreatic lesions, the performance of image-enhanced EUS techniques is essential, such as EUS elastography or contrast-enhanced harmonic EUS (CH-EUS). CH-EUS diagnosis is based on assessing the vascularity of lesions, whereas tissue elasticity is measured via EUS elastography. Elastography is either strain or shear-wave, depending on the different mechanical properties being evaluated. The usefulness of enhanced EUS techniques is demonstrated in this review for the differential diagnosis of pancreatic lesions, including solid and cystic lesions, and pancreatic cancer staging.

Performance Improvement of Protective Relaying for Large Transformer by Using Voltage-Current Trend and Flux-Differential Current Slope Characteristic (전압-전류 추이와 자속-차전류 기울기 특성을 이용한 변압기 보호계전기법의 성능 개선)

  • Park, Chul-Won;Park, Jae-Sae;Jung, Yun-Man;Ha, Kyung-Jae;Shin, Myong-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.2
    • /
    • pp.43-50
    • /
    • 2004
  • Percentage differential characteristic relaying(PDR) has been recognized as the principal basis for power transformer protection. Second harmonic restraint PDR has been widely used for magnetizing inrush in practice. Nowadays, relaying signals can contain 2nd harmonic component to a large extent even in a normal state, and 2nd harmonic ratio indicates a tendency of relative reduction because of the advancement of material. Further, as the power system voltage becomes higher and more underground cables are used, larger 2nd harmonic component in the differential current under internal fault is observed. And then, conventional 2nd harmonic restraint PDR exposes some doubt in reliability. It is, therefore, necessary to develop a new algorithm for performance improvement of conventional protective relaying. This paper proposes an advanced protective relaying algorithm by using voltage-current trend and flux-differential current slope characteristic. To evaluate the performance of the proposed algorithm, we have made comparative studies of PDR, fuzzy relaying and DWT relaying. The paper is constructed power system model including power transformer, utilizing the WatATP, and data collection is made through simulation of various internal faults and inrush. As the results of test, the new proposed algorithm was proven to be faster and more reliable.

A Feedback Wideband CMOS LNA Employing Active Inductor-Based Bandwidth Extension Technique

  • Choi, Jaeyoung;Kim, Sanggil;Im, Donggu
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.55-61
    • /
    • 2015
  • A bandwidth-enhanced ultra-wide band (UWB) CMOS balun-LNA is implemented as a part of a software defined radio (SDR) receiver which supports multi-band and multi-standard. The proposed balun-LNA is composed of a single-to-differential converter, a differential-to-single voltage summer with inductive shunt peaking, a negative feedback network, and a differential output buffer with composite common-drain (CD) and common-source (CS) amplifiers. By feeding the single-ended output of the voltage summer to the input of the LNA through a feedback network, a wideband balun-LNA exploiting negative feedback is implemented. By adopting a source follower-based inductive shunt peaking, the proposed balun-LNA achieves a wider gain bandwidth. Two LNA design examples are presented to demonstrate the usefulness of the proposed approach. The LNA I adopts the CS amplifier with a common gate common source (CGCS) balun load as the S-to-D converter for high gain and low noise figure (NF) and the LNA II uses the differential amplifier with the ac-grounded second input terminal as the S-to-D converter for high second-order input-referred intercept point (IIP2). The 3 dB gain bandwidth of the proposed balun-LNA (LNA I) is above 5 GHz and the NF is below 4 dB from 100 MHz to 5 GHz. An average power gain of 18 dB and an IIP3 of -8 ~ -2 dBm are obtained. In simulation, IIP2 of the LNA II is at least 5 dB higher than that of the LNA I with same power consumption.

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

Boundary Control of Axially Moving Continua: Application to a Zinc Galvanizing Line

  • Kim Chang-Won;Park Hahn;Hong Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.601-611
    • /
    • 2005
  • In this paper, an active vibration control of a tensioned, elastic, axially moving string is investigated. The dynamics of the translating string are described with a non-linear partial differential equation coupled with an ordinary differential equation. A right boundary control to suppress the transverse vibrations of the translating continuum is proposed. The control law is derived via the Lyapunov second method. The exponential stability of the closed-loop system is verified. The effectiveness of the proposed control law is simulated.

ASYMPTOTIC-NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL DIFFERENCE EQUATIONS OF MIXED-TYPE

  • SALAMA, A.A.;AL-AMERY, D.G.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.485-502
    • /
    • 2015
  • A computational method for solving singularly perturbed boundary value problem of differential equation with shift arguments of mixed type is presented. When shift arguments are sufficiently small (o(ε)), most of the existing method in the literature used Taylor's expansion to approximate the shift term. This procedure may lead to a bad approximation when the delay argument is of O(ε). The main idea for this work is to deal with constant shift arguments, which are independent of ε. In the present method, we construct the formally asymptotic solution of the problem using the method of composite expansion. The reduced problem is solved numerically by using operator compact implicit method, and the second problem is solved analytically. Error estimate is derived by using the maximum norm. Numerical examples are provided to support the theoretical results and to show the efficiency of the proposed method.

EXISTENCE OF SOLUTION FOR A FRACTIONAL DIFFERENTIAL INCLUSION VIA NONSMOOTH CRITICAL POINT THEORY

  • YANG, BIAN-XIA;SUN, HONG-RUI
    • Korean Journal of Mathematics
    • /
    • v.23 no.4
    • /
    • pp.537-555
    • /
    • 2015
  • This paper is concerned with the existence of solutions to the following fractional differential inclusion $$\{-{\frac{d}{dx}}\(p_0D^{-{\beta}}_x(u^{\prime}(x)))+q_xD^{-{\beta}}_1(u^{\prime}(x))\){\in}{\partial}F_u(x,u),\;x{\in}(0,1),\\u(0)=u(1)=0,$$ where $_0D^{-{\beta}}_x$ and $_xD^{-{\beta}}_1$ are left and right Riemann-Liouville fractional integrals of order ${\beta}{\in}(0,1)$ respectively, 0 < p = 1 - q < 1 and $F:[0,1]{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is locally Lipschitz with respect to the second variable. Due to the general assumption on the constants p and q, the problem does not have a variational structure. Despite that, here we study it combining with an iterative technique and nonsmooth critical point theory, we obtain an existence result for the above problem under suitable assumptions. The result extends some corresponding results in the literatures.