• Title/Summary/Keyword: seasonal unit root test

Search Result 11, Processing Time 0.017 seconds

A SIGN TEST FOR UNIT ROOTS IN A SEASONAL MTAR MODEL

  • Shin, Dong-Wan;Park, Sei-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.149-156
    • /
    • 2007
  • This study suggests a new method for testing seasonal unit roots in a momentum threshold autoregressive (MTAR) process. This sign test is robust against heteroscedastic or heavy tailed errors and is invariant to monotone data transformation. The proposed test is a seasonal extension of the sign test of Park and Shin (2006). In the case of partial seasonal unit root in an MTAR model, a Monte-Carlo study shows that the proposed test has better power than the seasonal sign test developed for AR model.

Durbin-Watson Type Unit Root Test Statistics

  • Kim, Byung-Soo;Cho, Sin-Sup
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.1
    • /
    • pp.57-66
    • /
    • 1998
  • In the analysis of time series it is an important issue to determine whether a time series under study is stationary. For the test of the stationary of the time series the Dickey-Fuller (DF) type tests have been mainly used. In this paper, we consider the regular unit root tests and seasonal unit root tests based on the generalized Durbin-Watson (DW) statistics when the errors are independent. The limiting distributions of the proposed DW-type test statistics are the functionals of standard Brownian motions. We also obtain the finite distributions and powers of the DW-type test statistics and compare the performances with the DF-type tests. It is observed that the DW-type test statistics have good behaviors against the DF-type test statistics especially in the nonzero (seasonal) mean model.

  • PDF

Joint Test for Seasonal Cointegrating Ranks

  • Seong, Byeong-Chan;Yi, Yoon-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.719-726
    • /
    • 2008
  • In this paper we consider a joint test for seasonal cointegrating(CI) ranks that enables us to simultaneously model cointegrated structures across seasonal unit roots in seasonal cointegration. A CI rank test for a single seasonal unit root is constructed and extended to a joint test for multiple seasonal unit roots. Their asymptotic distributions and selected critical values for the joint test are obtained. Through a small Monte Carlo simulation study, we evaluate performances of the tests.

ROBUST UNIT ROOT TESTS FOR SEASONAL AUTOREGRESSIVE PROCESS

  • Oh, Yu-Jin;So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.149-157
    • /
    • 2004
  • The stationarity is one of the most important properties of a time series. We propose robust sign tests for seasonal autoregressive processes to determine whether or not a time series is stationary. The proposed tests are robust to the outliers and the heteroscedastic errors, and they have an exact binomial null distribution regardless of the period of seasonality and types of median adjustments. A Monte-Carlo simulation shows that the sign test is locally more powerful than the tests based on ordinary least squares estimator (OLSE) for heavy-tailed and/or heteroscedastic error distributions.

ROBUST UNIT ROOT TESTS FOR SEASONAL AUTOREGRESSIVE PROCESS

  • Oh, Yu-Jin;So, Beong-Soo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.281-286
    • /
    • 2003
  • The stationarity is one of the most important properties of a time series. We propose robust sign tests for seasonal autoregressive process to determine whether or not a time series is stationary. The tests have an exact binomial null distribution and are robust to the outliers and the heteroscedastic errors. Monte-Carlo simulation shows that the sign test is locally more powerful than the OLSE-based tests for heavy-tailed and/or heteroscedastic error distributions.

  • PDF

Lagrange Multiplier Test for both Regular and Seasonal Unit Roots

  • Park, Young-J.;Cho, Sin-Sup
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.101-114
    • /
    • 1995
  • In this paper we consider the multiple unit root tests both for the regular and seasonal unit roots based on the Lagrange Multiplier(LM) principle. Unlike Li(1991)'s method, by plugging the restricted maximum likelihood estimates of the nuisance parameters in the model, we propose a Lagrange multiplier test which does not depend on the existence of the nuisance parameters. The asymptotic distribution of the proposed statistic is derived and empirical percentiles of the test statistic for selected seasonal periods are provided. The power and size of the test statistic for examined for finite samples through a Monte Carlo simularion.

  • PDF

Forecasting the Korea's Port Container Volumes With SARIMA Model (SARIMA 모형을 이용한 우리나라 항만 컨테이너 물동량 예측)

  • Min, Kyung-Chang;Ha, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.600-614
    • /
    • 2014
  • This paper develops a model to forecast container volumes of all Korean seaports using a Seasonal ARIMA (Autoregressive Integrated Moving Average) technique with the quarterly data from the year of 1994 to 2010. In order to verify forecasting accuracy of the SARIMA model, this paper compares the predicted volumes resulted from the SARIMA model with the actual volumes. Also, the forecasted volumes of the SARIMA model is compared to those of an ARIMA model to demonstrate the superiority as a forecasting model. The results showed the SARIMA Model has a high level of forecasting accuracy and is superior to the ARIMA model in terms of estimation accuracy. Most of the previous research regarding the container-volume forecasting of seaports have been focussed on long-term forecasting with mainly monthly and yearly volume data. Therefore, this paper suggests a new methodology that forecasts shot-term demand with quarterly container volumes and demonstrates the superiority of the SARIMA model as a forecasting methodology.

Forecasting the Air Cargo Demand With Seasonal ARIMA Model: Focusing on ICN to EU Route (계절성 ARIMA 모형을 이용한 항공화물 수요예측: 인천국제공항발 유럽항공노선을 중심으로)

  • Min, Kyung-Chang;Jun, Young-In;Ha, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.3-18
    • /
    • 2013
  • This study develops a forecasting method to estimate air cargo demand from ICN(Incheon International Airport) to all airports in EU with Seasonal Autoregressive Integrated Moving Average (SARIMA) Model using volumes from the first quarter of 2000 to the fourth quarter of 2009. This paper shows the superiority of SARIMA Model by comparing the forecasting accuracy of SARIMA with that of other ARIMA (Autoregressive Integrated Moving Average) models. Given that very few papers and researches focuses on air route, this paper will be helpful to researchers concerned with air cargo.

Short-term Construction Investment Forecasting Model in Korea (건설투자(建設投資)의 단기예측모형(短期豫測模型) 비교(比較))

  • Kim, Kwan-young;Lee, Chang-soo
    • KDI Journal of Economic Policy
    • /
    • v.14 no.1
    • /
    • pp.121-145
    • /
    • 1992
  • This paper examines characteristics of time series data related to the construction investment(stationarity and time series components such as secular trend, cyclical fluctuation, seasonal variation, and random change) and surveys predictibility, fitness, and explicability of independent variables of various models to build a short-term construction investment forecasting model suitable for current economic circumstances. Unit root test, autocorrelation coefficient and spectral density function analysis show that related time series data do not have unit roots, fluctuate cyclically, and are largely explicated by lagged variables. Moreover it is very important for the short-term construction investment forecasting to grasp time lag relation between construction investment series and leading indicators such as building construction permits and value of construction orders received. In chapter 3, we explicate 7 forecasting models; Univariate time series model (ARIMA and multiplicative linear trend model), multivariate time series model using leading indicators (1st order autoregressive model, vector autoregressive model and error correction model) and multivariate time series model using National Accounts data (simple reduced form model disconnected from simultaneous macroeconomic model and VAR model). These models are examined by 4 statistical tools that are average absolute error, root mean square error, adjusted coefficient of determination, and Durbin-Watson statistic. This analysis proves two facts. First, multivariate models are more suitable than univariate models in the point that forecasting error of multivariate models tend to decrease in contrast to the case of latter. Second, VAR model is superior than any other multivariate models; average absolute prediction error and root mean square error of VAR model are quitely low and adjusted coefficient of determination is higher. This conclusion is reasonable when we consider current construction investment has sustained overheating growth more than secular trend.

  • PDF