• Title/Summary/Keyword: seasonal time series model

Search Result 167, Processing Time 0.025 seconds

CNN-LSTM Coupled Model for Prediction of Waterworks Operation Data

  • Cao, Kerang;Kim, Hangyung;Hwang, Chulhyun;Jung, Hoekyung
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1508-1520
    • /
    • 2018
  • In this paper, we propose an improved model to provide users with a better long-term prediction of waterworks operation data. The existing prediction models have been studied in various types of models such as multiple linear regression model while considering time, days and seasonal characteristics. But the existing model shows the rate of prediction for demand fluctuation and long-term prediction is insufficient. Particularly in the deep running model, the long-short-term memory (LSTM) model has been applied to predict data of water purification plant because its time series prediction is highly reliable. However, it is necessary to reflect the correlation among various related factors, and a supplementary model is needed to improve the long-term predictability. In this paper, convolutional neural network (CNN) model is introduced to select various input variables that have a necessary correlation and to improve long term prediction rate, thus increasing the prediction rate through the LSTM predictive value and the combined structure. In addition, a multiple linear regression model is applied to compile the predicted data of CNN and LSTM, which then confirms the data as the final predicted outcome.

Hydrodynamic Modeling of Saemangeum Reservoir and Watershed using HSPF and EFDC (HSPF-EFDC를 이용한 새만금호와 유역의 수리 변화 모의)

  • Shin, Yu-Ri;Jung, Ji-Yeon;Choi, Jung-Hoon;Jung, Kwang Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.384-393
    • /
    • 2012
  • Saemangeum lake is an artificial lake created by reclamation works and an estuary embankment since 2006. The sea water flows into the lake by the operation of two sluice gates, and the freshwater enters into the lake by the upper streams. For the reflection of hydrology and hydrodynamics effects in Saemangeum area, a hydrodynamics model was developed by connecting Hydrological Simulation Program with Fortran (HSPF) and Environmental Fluid Dynamic Code (EFDC). The HSPF was applied to simulate the freshwater discharge from the upper steam watershed, and the EFDC was performed to compute water flow, water temperature, and salinity based on time series from 2008 to 2009. The calibration and validation are performed to analyze horizontal and vertical gradients. The horizontal trend of model simulation results is reflected in the trend of observed data tolerably. The vertical trend is conducted an analysis of seasonal comparisons because of the limitation of vertically observed data. Water temperature reflects on the seasonal changes. Salinity has an effect on the near river input spots. The impact area of salinity is depending on the sea water distribution by gate operation, mainly.

Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions (계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가)

  • Uran Chung;Jinyoung Rhee;Miae Kim;Soo-Jin Sohn
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.2
    • /
    • pp.80-98
    • /
    • 2023
  • This study explores the effectiveness of various data preprocessing algorithms for improving subseasonal to seasonal (S2S) climate predictions from six climate forecast models and their Multi-Model Ensemble (MME) using a deep learning-based postprocessing model. A pipeline of data transformation algorithms was constructed to convert raw S2S prediction data into the training data processed with several statistical distribution. A dimensionality reduction algorithm for selecting features through rankings of correlation coefficients between the observed and the input data. The training model in the study was designed with TimeDistributed wrapper applied to all convolutional layers of U-Net: The TimeDistributed wrapper allows a U-Net convolutional layer to be directly applied to 5-dimensional time series data while maintaining the time axis of data, but every input should be at least 3D in U-Net. We found that Robust and Standard transformation algorithms are most suitable for improving S2S predictions. The dimensionality reduction based on feature selections did not significantly improve predictions of daily precipitation for six climate models and even worsened predictions of daily maximum and minimum temperatures. While deep learning-based postprocessing was also improved MME S2S precipitation predictions, it did not have a significant effect on temperature predictions, particularly for the lead time of weeks 1 and 2. Further research is needed to develop an optimal deep learning model for improving S2S temperature predictions by testing various models and parameters.

Prediction on the amount of river water use using support vector machine with time series decomposition (TDSVM을 이용한 하천수 취수량 예측)

  • Choi, Seo Hye;Kwon, Hyun-Han;Park, Moonhyung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1075-1086
    • /
    • 2019
  • Recently, as the incidence of climate warming and abnormal climate increases, the forecasting of hydrological factors such as precipitation and river flow is getting more complicated, and the risk of water shortage is also increasing. Therefore, this study aims to develop a model for predicting the amount of water intake in mid-term. To this end, the correlation between water intake and meteorological factors, including temperature and precipitation, was used to select input factors. In addition, the amount of water intake increased with time series and seasonal characteristics were clearly shown. Thus, the preprocessing process was performed using the time series decomposition method, and the support vector machine (SVM) was applied to the residual to develop the river intake prediction model. This model has an error of 4.1% on average, which is higher accuracy than the SVM model without preprocessing. In particular, this model has an advantage in mid-term prediction for one to two months. It is expected that the water intake forecasting model developed in this study is useful to be applied for water allocation computation in the permission of river water use, water quality management, and drought measurement for sustainable and efficient management of water resources.

The Forecast of the Cargo Transportation and Traffic Volume on Container in Gwangyang Port, using Time Series Models (시계열 모형을 이용한 광양항의 컨테이너 물동량 및 교통량 예측)

  • Kim, Jung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.425-431
    • /
    • 2008
  • The future cargo transportation and traffic volume on container in Gwangyang port was forecasted by using univariate time series models in this research. And the container ship traffic was produced. The constructed models all were most adapted to Winters' additive models with a trend and seasonal change. The cargo transportation on container in Gwangyang port was estimated each about 2,756 thousand TEU and 4,470 thousand TEU in 2011 and 2015 by increasing each 7.4%, 16.2% compared with 2007. The volume per ship on container was estimated each about 675TEU and 801TEU in 2011 and 2015 by increasing each 30.3%, 54.6% compared with 2007. Also, traffic volume on container incoming in Gwangyang Port was prospected each about 4,078ships and 5,921ships in 2011 and 2015.

Effectiveness Evaluation of Demand Forecasting Based Inventory Management Model for SME Manufacturing Factory (중소기업 제조공장의 수요예측 기반 재고관리 모델의 효용성 평가)

  • Kim, Jeong-A;Jeong, Jongpil;Lee, Tae-hyun;Bae, Sangmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.197-207
    • /
    • 2018
  • SMEs manufacturing Factory, which are small-scale production systems of various types, mass-produce and sell products in order to meet customer needs. This means that the company has an excessive amount of material supply to reduce the loss due to lack of inventory and high inventory maintenance cost. And the products that fail to respond to the demand are piled up in the management warehouse, which is the reality that the storage cost is incurred. To overcome this problem, this paper uses ARIMA model, a time series analysis technique, to predict demand in terms of seasonal factors. In this way, demand forecasting model based on economic order quantity model was developed to prevent stock shortage risk. Simulation is carried out to evaluate the effectiveness of the development model and to demonstrate the effectiveness of the development model as applied to SMEs in the future.

A Neural Network for Long-Term Forecast of Regional Precipitation (지역별 중장기 강수량 예측을 위한 신경망 기법)

  • Kim, Ho-Joon;Paek, Hee-Jeong;Kwon, Won-Tae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.2
    • /
    • pp.69-78
    • /
    • 1999
  • In this paper, a neural network approach to forecast Korean regional precipitation is presented. We first analyze the characteristics of the conventional models for time series prediction, and then propose a new model and its learning method for the precipitation forecast. The proposed model is a layered network in which the outputs of a layer are buffered within a given period time and then fed fully connected to the upper layer. This study adopted the dual connections between two layers for the model. The network behavior and learning algorithm for the model are also described. The dual connection structure plays the role of the bias of the ordinary Multi-Layer Perceptron(MLP), and reflects the relationships among the features effectively. From these advantageous features, the model provides the learning efficiency in comparison with the FIR network, which is the most popular model for time series prediction. We have applied the model to the monthly and seasonal forecast of precipitation. The precipitation data and SST(Sea Surface Temperature) data for several decades are used as the learning pattern for the neural network predictor. The experimental results have shown the validity of the proposed model.

  • PDF

A Study on the 3-month Prior Prediction of Chl-a Concentraion in the Daechong Lake using Hydrometeorological Forecasting Data (수문기상예측자료를 활용한 대청호 Chl-a 3개월 선행예측연구)

  • Kwak, Jaewon
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.144-153
    • /
    • 2021
  • In recently, the green algae bloom is one of the most severe challenges. The seven days prior prediction is in operation to issues the water quality warning, but it also needs a longer time of prediction to take preemptive measures. The objective of the study is to establish a method to conduct a 3-month prior prediction of Chl-a concentration in the Daechong Lake and tested its applicability as a supplementary of current water quality warning. The historical record of water quality in the Daechong Lake and seasonal forecasting of ECMWF were obtained, and its time-series characteristics were analyzed. The Chl-a forecasting model was established using a correlation between Chl-a concentration and meteorological factor and NARX model, and its efficiency was compared.

Estimation of Smoothing Constant of Minimum Variance and Its Application to Shipping Data with Trend Removal Method

  • Takeyasu, Kazuhiro;Nagata, Keiko;Higuchi, Yuki
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.4
    • /
    • pp.257-263
    • /
    • 2009
  • Focusing on the idea that the equation of exponential smoothing method (ESM) is equivalent to (1, 1) order ARMA model equation, new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Theoretical solution was derived in a simple way. Mere application of ESM does not make good forecasting accuracy for the time series which has non-linear trend and/or trend by month. A new method to cope with this issue is required. In this paper, combining the trend removal method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removal by a linear function is applied to the original shipping data of consumer goods. The combination of linear and non-linear function is also introduced in trend removal. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful especially for the time series that has stable characteristics and has rather strong seasonal trend and also the case that has non-linear trend. The effectiveness of this method should be examined in various cases.

Electricity Demand Forecasting for Daily Peak Load with Seasonality and Temperature Effects (계절성과 온도를 고려한 일별 최대 전력 수요 예측 연구)

  • Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.843-853
    • /
    • 2014
  • Accurate electricity demand forecasting for daily peak load is essential for management and planning at electrical facilities. In this paper, we rst, introduce the several time series models that forecast daily peak load and compare the forecasting performance of the models based on Mean Absolute Percentage Error(MAPE). The results show that the Reg-AR-GARCH model outperforms other competing models that consider Cooling Degree Day(CDD) and Heating Degree Day(HDD) as well as seasonal components.