본 연구에서는 새마을 무궁화 열차의 주요 5개노선(경부선, 호남선, 전라선, 장항선, 중앙선)의 단기수송수요의 예측모형 선정방안을 제시하고 유용성을 확인하기 위한 검증결과를 제시하였다. 분석을 위해 계절별 특성이 반영된 SARIMA 모형을 이용하였으며, 주중/주말 통행 특성 및 대체근무제 등과 같은 공휴일 특성을 반영하고자 각 노선별 주중/주말 일평균 모형을 각각 구축하였다. 또한 모형의 신뢰도를 높이기 위해 EXPO 개최, 새로운 노선의 개통 등 노선별 개입요소를 고려하여 수송수요의 예측모형에 반영하였으며 모형 예측력의 검증을 통해 정도 높은 모형을 구축하였음을 확인하였다. 본 연구를 통해 개발된 모형은 열차 노선별 단기운행계획 수립을 위한 기초자료로 활용될 수 있을 것으로 기대된다.
The challenge of predicting the Japanese coastal ocean motivated Frontier Observational Research System for Global Change (FORSGC) and the Japan Marine Science and Technology Center (JAMSTEC) to start a multiyear observational programme in the upstream Kuroshio in November 2000. This field effort, the Kuroshio Observation Program (KOP), should enable us to determine the barotropic and baroclinic components of the western boundary current system, thus, to better understand interactions of the currents with mesoscale eddies, the Kuroshio instabilities, and path bimodality. We, then, will be able to improve modeling predictability of the mesoscale, seasonal, and inter-annual processes in the midstream Kuroshio near the Japanese main islands by using this knowledge. The KOP is focused on an enhanced regional coverage of the sea surface height variability and the baroclinic structure of the mainstream Kuroshio in the East China Sea, the Ryukyu Current east of the Ryukyu's, and the Kuroshio recirculation. An attractive approach of the KOP is a development of a new data acquisition system via acoustic telemetry of the observational data. The monitoring system will provide observations for assimilation into extensive numerical models of the ocean circulation, targeting the real-time monitoring of the Japanese coastal waters.
Successful launch requires state-of-the-art launch vehicle technology and constant test operations, However, the meteorological threat to the launch vehicle flight trajectory is also an important factor for launch success. Atmospheric stability above the Naro Space Center at the this time is very important, especially because the initial flight operation can determine the success of the launch. Moreover, during the flight of launch vehicle with rapid pressure and thrust into the atmosphere, convection activity in the atmosphere may create environmental conditions that cause severe weather threats such as thunderstorms. Hence, studies of atmospheric instability characteristics over the Naro Space Center are a necessary part of successful launch missions. Therefore, the main aims of this study were to (1) verify the atmospheric stability index and convection activity characteristics over the Naro Space Center using radiosonde data observed from 2007 to 2018 by the Naro Space Center, (2) analyze changes in the atmospheric stability index according to monthly and seasonal changes, and (3) assess how the calculated atmospheric stability index is related to actual thunderstorm occurrence using statistical analysis. Additionally, we aimed to investigate the atmospheric characteristics above the Naro Space Center through the distribution chart of the atmospheric stability index during summer, when convection activity is highest. Finally, we assessed the relationship between lightning occurrence and unstable atmospheric conditions, through predictability analysis performed using the lightning observation data of the Korea Meteorological Administration.
신뢰성 있는 수개월 선행시간의 댐 유입량 예측은 가뭄 상황으로 진입하는 시점에서 효율적인 댐 운영을 위해 필수적이다. 최근 기후변화로 인한 강수량의 경년 및 계절 내 변동성이 증가됨에 따라서 기존의 과거 통계치를 이용한 댐 운영 의사결정은 많은 도전을 받고 있다. 최근 엘리뇨-남방진동(ENSO) 등의 전구기후지수와 지역수문기후와의 원격상관성을 활용하여 수개월 이후에 대한 수문조건을 통계적으로 예측하기 위한 연구가 시도되고 있다. 또한 매월 제공되는 역학적 예측모형으로부터 생산된 월단위 예측정보를 유량예측을 위한 유역모형에 활용하기 위하여 편이보정 및 상세화 기법이 개발되어 활용되고 있다. 본 연구에서는 댐 유입량 예측을 위해 SWAT 모형을 선정하였고 최장 6개월 선행 강수량 및 기온의 예측을 위해서 하이브리드 계절예측 시스템을 활용하였다. 이 시스템은 전지구역학적 예측모형의 자료를 편이보정을 거쳐 직접적으로 사용하는 단순 편이보정(Simple Bias Correction, SBC) 방법에 회귀모형을 이용하여 통계적인 방법으로 예측자료를 생산하는 전구기후지수 기반의 Climate Index Regression (CIR), 실시간 재분석자료 기반의 Observation-based Moving Window Regression (MWR-Obs), 역학적 예측모형의 예측자료 기반의 Moving Window Regression (MWR) 방법을 통합하여 사용하고 있다. 충주댐을 대상으로 우선 관측자료를 이용하여 SWAT 모형을 검 보정한 후, 관측기간에 대하여 하이브리드 시스템에 의한 예측 기상자료를 적용하여 모의된 댐 유입량과 관측 유입량과의 비교를 통해 예측성을 평가하였다. 본 연구는 다양한 기후정보를 활용하여 댐 유입량 예측에 있어서 예측성을 높이고자 시도되었으며, 도출된 결과는 향후 충주댐 운영에 유용한 정보를 제공할 수 있는 것으로 판단된다.
In the summer of 2018, the Korea-Japan (KJ) region experienced an extremely severe and prolonged heatwave. This study examines the GloSea6 model's prediction performance for the 2018 KJ heatwave event and investigates how its prediction skill is related to large-scale circulation patterns identified by the k-means clustering method. Cluster 1 pattern is characterized by a KJ high-pressure anomaly, Cluster 2 pattern is distinguished by an Eastern European high-pressure anomaly, and Cluster 3 pattern is associated with a Pacific-Japan pattern-like anomaly. By analyzing the spatial correlation coefficients between these three identified circulation patterns and GloSea6 predictions, we assessed the contribution of each circulation pattern to the heatwave lifecycle. Our results show that the Eastern European high-pressure pattern, in particular, plays a significant role in predicting the evolution of the development and peak phases of the 2018 KJ heatwave approximately two weeks in advance. Furthermore, this study suggests that an accurate representation of large-scale atmospheric circulations in upstream regions is a key factor in seasonal forecast models for improving the predictability of extreme weather events, such as the 2018 KJ heatwave.
In this study, we investigate the performance of Global Seasonal Forecasting System version 5 (GloSea5) in Korea Meteorological Administration on the relationship between El $Ni{\tilde{n}}o$ and East Asian climate for the period of 1991~2010. It is found that the GloSea5 has a great prediction skill of El $Ni{\tilde{n}}o$ whose anomaly correlation coefficients of $Ni{\tilde{n}}o$ indices are over 0.96 during winter. The eastern Pacific (EP) El $Ni{\tilde{n}}o$ and the central Pacific (CP) El $Ni{\tilde{n}}o$ are considered and we analyze for EP El $Ni{\tilde{n}}o$, which is well simulated in GloSea5. The analysis period is divided into the developing phase of El $Ni{\tilde{n}}o$ summer (JJA(0)), mature phase of El $Ni{\tilde{n}}o$ winter (D(0)JF(1)), and decaying phase of El $Ni{\tilde{n}}o$ summer (JJA(1)). The GloSea5 simulates the relationship between precipitation and temperature in East Asia and the prediction skill for the East Asian precipitation and temperature varies depending on the El $Ni{\tilde{n}}o$ phase. While the precipitation and temperature are simulated well over the equatorial western Pacific region, there are biases in mid-latitude region during the JJA(0) and JJA(1). Because the low level pressure, wind, and vertical stream function are simulated weakly toward mid-latitude region, though they are similar with observation in low-latitude region. During the D(0)JF(1), the precipitation and temperature patterns analogize with observation in most regions, but there is temperature bias in inland over East Asia. The reason is that the GloSea5 poorly predicts the weakening of Siberian high, even though the shift of Aleutian low is predicted. Overall, the predictability of precipitation and temperature related to El $Ni{\tilde{n}}o$ in the GloSea5 is considered to be better in D(0)JF(1) than JJA(0) and JJA(1) and better in ocean than in inland region.
Asian dust is a seasonal meteorological phenomenon influencing most East Asia, irregularly occurring during spring. Unusual heavy Asian dust event in winter was observed in Seoul, Korea, with up to $1,044{\mu}g\;m^{-3}$ of hourly mean $PM_{10}$, in 22~23 February 2015. Causes of such infrequent event has been studied using both ground based and spaceborne observations, as well as numerical simulations including ECMWF ERA Interim reanalysis, NOAA HYSPLIT backward trajectory analysis, and ADAM2-Haze simulation. Analysis showed that southern Mongolia and northern China, one of the areas for dust origins, had been warm and dry condition, i.e. no snow depth, soil temperature of ${\sim}0^{\circ}C$, and cumulative rainfall of 1 mm in February, along with strong surface winds higher than critical wind speed of $6{\sim}7.5m\;s^{-1}$ during 20~21 February. While Jurihe, China, ($42^{\circ}23^{\prime}56^{{\prime}{\prime}}N$, $112^{\circ}53^{\prime}58^{{\prime}{\prime}}E$) experienced $9,308{\mu}g\;m^{-3}$ of hourly mean surface $PM_{10}$ during the period, the Asian dust had affected the Korean Peninsula within 24 hours traveling through strong north-westerly wind at ~2 km altitude. KMA issued Asian dust alert from 1100 KST on 22nd to 2200 KST on 23rd since above $400{\mu}g\;m^{-3}$ of hourly mean surface $PM_{10}$. It is also important to note that, previously to arrival of the Asian dust, the Korean Peninsula was affected by anthropogenic air pollutants ($NO_3^-$, $SO_4^{2-}$, and $NH_4^+$) originated from the megacities and large industrial areas in northeast China. In addition, this study suggests using various data sets from modeling and observations as well as improving predictability of the ADAM2-Haze model itself, in order to more accurately predict the occurrence and impacts of the Asian dust over the Korean peninsula.
일반적으로 강우-유출모형의 매개변수 최적화는 가용 자료 전체를 대상으로 수행하여 고유의 매개변수 집합을 활용한다. 그러나, 계절에 따른 강수량의 편차가 큰 국내의 기후 특성과 더불어 기후변화로 인하여 계절성에 따른 편차 및 변동성이 증가할 것으로 전망되고 있어, 물 수요자들에 대한 안정적인 공급을 위한 장기간의 계획에서 계절성을 반영한 매개변수 추정은 효율적인 물배분에 중요한 요소라 할 수 있다. 본 연구에서는 기후특성에 따른 강우-유출모형의 변동성을 분석하기 위하여 소양강댐 유역을 대상으로 GR4J 강우-유출모형을 활용한 지역적 민감도 분석을 수행하였으며, 산출된 민감도 분석 결과와 기상자료를 결합하여 SOM을 활용해 군집화하였다. 이를 통해 계절 분리를 수행하고 각 계절의 특징을 분석하여 강우-유출모형의 보정 기법을 개발하였으며, 통계적 지표를 이용하여 성능을 평가하였다. 결과적으로 비교적 유량이 적은 Cold 기간의 모형 성능이 개선되는 것을 확인할 수 있었다. 이는 몬순기후 등 강수편차가 큰 지역을 대상으로 수문모형의 성능 및 예측도를 높일 수 있을 것으로 판단된다.
산림생태계에서 총일차생산성(Gross Primary Production, GPP)은 기후변화에 따른 산림의 생산성과 그에 영향을 미치는 식물계절, 건강성, 탄소 순환 등을 대표하는 지표이다. 총일차생산성을 추정하기 위해서는 에디공분산 타워 자료나 위성영상관측자료를 이용하기도 하고 물리지형적 한계나 기후변화 등을 고려하기 위해 기작기반모델링을 활용하기도 한다. 그러나 총일차생산성을 포함한 산림 탄소 순환의 기작기반 모델링은 식물의 생물, 생리, 화학적 기작들의 반응과 지형, 기후 및 시간 등과 같은 환경 조건들이 복잡하게 얽혀 있어 비선형적이고 유연성이 떨어져 반응에 영향을 주는 조건들을 모두 적용하기가 어렵다. 본 연구에서는 산림 생산성 추정 모델을 에디공분산 자료와 인공위성영상 정보를 사용하여 기계학습 알고리즘을 사용한 모델들로 구축해 보고 그 사용 및 확장 가능성을 검토해 보고자 하였다. 설명변수들로는 에디공분산자료와 인공위성자료에서 나온 대기기상인자들을 사용하였고 검증자료로 에디공분산 타워에서 관측된 총일차생산성을 사용하였다. 산림생산성 추정 모델은 1) 에디공분산 관측 기온($T_{air}$), 태양복사($R_d$), 상대습도(RH), 강수(PPT), 증발산(ET) 자료, 2) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD 자료(개량식생지수 제외), 3) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD, 개량식생지수(EVI) 자료를 사용하는 세 가지 경우로 나누어 구축하여 2006 - 2013년 자료로 훈련시키고 2014, 2015년 자료로 검증하였다. 기계학습 알고리즘은 support vector machine (SVM), random forest (RF), artificial neural network (ANN)를 사용하였고 단순 비교를 위해 고전적 방법인 multiple linear regression model (LM)을 사용하였다. 그 결과, 에디공분산 입력자료로 훈련시킨 모델의 예측력은 피어슨 상관계수 0.89 - 0.92 (MSE = 1.24 - 1.62), MODIS 입력자료로 훈련시킨 모델의 예측력은 개량식생지수 제외된 모델은 0.82 - 0.86 (MSE = 1.99 - 2.45), 개량식생지수가 포함된 모델은 0.92 - 0.93(MSE = 1.00 - 1.24)을 보였다. 이러한 결과는 산림총일차생산성 추정 모델 구축에 있어 MODIS인공위성 영상 정보 기반으로 기계학습 알고리즘을 사용하는 것에 대한 높은 활용가능성을 보여주었다.
산업화 이후 대기 이산화탄소를 포함한 온실가스 증가에 따라 전지구 기온이 빠르게 올라가고 있는데, 특히 북극의 온난화가 저위도에 비해 2-3배 빠르다. 그리고 온난화와 함께 북극 해빙의 농도와 면적도 지속적으로 감소추세에 있다. 이는 온난화에 대한 북극의 눈과 얼음에 의한 알베도 피드백, 표면기온 차이에 의해 더 많은 에너지를 잃는 플랑크 피드백, 저위도와 고위도의 안정도 차이에 의한 기온감률 피드백, 북극해 온난화에 의한 구름과 수증기 증가 피드백, 그리고 북극으로의 현열속 증가 등에 의한다. 이와 같이 급격한 북극 온난화에 반해 중위도에는 냉각화가 나타나고, 지역에 따라 한파가 더 자주 나타나고 오래 지속되는 경향을 보이는데, 이는 북극 온난화 증폭과 연관 있다는 연구결과들이 많이 보고되고 있다. 북극 온난화는 2가지 경로를 통해 중위도 냉각화로 연결되는데, 하나는 종관규모로 주로 블로킹과 로스비 파동의 발달에 의한 시베리아 고기압을 강화시켜 대류권에서 일어나는 현상이며, 두 번째는 북극 온난화에 의한 상층으로의 행성파 전달을 활성화하여 폴라보텍스를 약화시켜 성층권을 경유해 수개월 동안 나타나는 경로이다. 중위도 한파와 북극 온난화 증폭 간에는 수주에서 수개월의 시차가 존재하기 때문에, 북극 온난화부터 중위도 한파에 이르는 일련의 연쇄 과정을 이해할 수 있으면 겨울철 중위도 기상 예측의 정확성을 높일 수 있다. 이연구에서는 기존에 보고된 많은 결과들을 종합하고 온도와 해빙 변화 경향 분석을 통해 현재 진행되는 북극 온난화와 중위도 냉각화 경향 그리고 이 둘 간의 관계를 고찰해 보고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.