• Title/Summary/Keyword: seasonal patterns

Search Result 505, Processing Time 0.023 seconds

Biomass Production and Phosphorus Inflow in three Perennial Herb Populations in the Basin of the Mt. Geumoh (금오산분지의 삼종 다년생 초목식물 개체군의 식물량생산과 인의 유입)

  • 유승원
    • Journal of Plant Biology
    • /
    • v.29 no.2
    • /
    • pp.95-107
    • /
    • 1986
  • Seasonal changes in pool size, inflow rates in biomass and phosphorus, and the efficiency of phosphorus use in the stand of three populations (Helianthus tuberosus, Artemisia princeps and Phalaris arundinacea) in the basin of the Mt. Geumoh were investigated. During the early growing period, in the three species populations the relative size of the phosphorus pool of population was larger then that of its biomass pool, but that of the phosphorus pool of belowground part decreased more rapidly than that of its biomass pool. In the A. princeps and P. arundinacea populations, the phosphorus inflow rate was markedly high during the soil thaw in early spring and its seasonal change pattern was different from that of the biomass production rate, showing two peaks in March and June. But in the H. tuberosus population, the two seasonal change patterns were alike. The annual biomass production was 2283 gDM m-2 in the H. tuberosus, 1884 m-2 in the A. princeps and 1879 gDM m-2 in the P. arundinacea population, and the annual phosphorus inflow was 11.35, 9.63 and 7.60 gP m-2, respectively. The P. arundinacea population showed the smallest LAI peak(5.4 in early June), and the largest NAR peak (36.9 gDM m-2wk-1) RGR peak (0.15g g-1 wk-1) among the three species populations. The seasonal change patterns in whole plant EPU of the three species populations showed the bell shape, but the annual EPU values among them were markedly different. It was noticed that the population with the highest RGR showed the highest EPU among the three species populations while the population with the lowest RGR showed the lowest EPU among them.

  • PDF

Spatio-Temporal Changes in Seasonal Extreme Temperature Events in the Republic of Korea (우리나라 사계절 극한기온현상의 시.공간적 변화)

  • Choi, Gwangyong
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.4
    • /
    • pp.489-508
    • /
    • 2014
  • The purpose of this study is to clarify the spatio-temporal patterns of changes in seasonal extreme temperature events in the Republic of Korea based on daily maximum and minimum temperature data sets observed at 61 weather stations for the recent 40 year period (1973~2012). According to analysis of regional average data, in spring increases of warm days are most distinct, while in summer reductions of cool nights and increases of warm nights are most noticeable. The similar patterns to those in summer are observed in fall, while in winter reductions of cool days and nights are notable. Regardless of the magnitude of urbanization, changes in nighttime extreme temperature events prevail in transitional periods between seasons, while those in daytime extreme temperature events do so only in particular months. In contrast, cool days in spring and summer, warm days in summer and warm nights in winter do not show any statistically-significant changes at most of stations. The sensitivity of seasonal extreme temperature events to increases of seasonal average extreme temperature is greatest in the case of warm days ($+6.3days/^{\circ}C$) and cool nights ($-6.2days/^{\circ}C$) in spring, warm nights ($+10.4days/^{\circ}C$) and days ($+9.5days/^{\circ}C$) in summer, warm days ($+7.7days/^{\circ}C$) in fall, and cool nights ($-4.7/^{\circ}C$) in winter, respectively. These results indicate that changes in seasonal extreme temperature events and their sensitivity to changes in seasonal climate means under a warmer climate are occurring with seasonally and diurnally asymmetric magnitudes in Korea due to complex climate feedbacks.

  • PDF

Northeast Asia Interconnection and Regional Reserve Increase Effects (동북아 연계선로 구성 및 지역별 예비력 증가 효과)

  • Lee, Sang-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.417-419
    • /
    • 2005
  • This paper presents the effects and the regional power distribution of an increase or a decrease of a power reserve by load flow calculations under seasonal load patterns of each country for the future power shortages faced by the metropolitan areas or by the southeastern area of the South Korea in North-East Asia. In these connections, the types of a power transmission for interconnection consist of the 765kV HVAC and the HVDC. In this paper, the various cases of the power system interconnections in Far-East Asia are presented, and the resulting interconnected power systems are simulated by means of a power flow analysis performed with the PSS/E 28 version tool. The power flow map is drawn from data simulated and the comparative study is done. In this future, a power flow analysis will be considered to reflect the effects of seasonal power exchanges And the plan of assumed scenarios will be considered with maximum or minimum power exchanges during summer or winter in North-East Asia countries.

  • PDF

Monitoring Method for an Ambient Gamma Exposure Rate and Its Measurement Analysis

  • Lee, Mo-Sung;Woo, Jong-Kwan
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.197-201
    • /
    • 2006
  • Daily and seasonal variations of the ambient gamma ray exposure rates were measured by using a pressurized ion chamber from January 2003 to December 2005 in the CheongJu Regional Radiation Monitoring Post and the patterns of the distributions were studied. The annual average of the daily variation of the exposure rate was $\sim0.17{\mu}R/h$. The exposure rate was found to be maximum during 8:00 am to 9:00 am and minimum during 8:00 pm to 10:00 pm. For the annual data, the exposure rate was the minimum during the month of February. The exposure rate increased from February to mid-October (except during the period from May to July with no change) and decreased from October to February. The seasonal variation was found to be about $1{\mu}R/h$. Most of the measured values (96%) of the exposure rates fell under the normal distribution with a deviation of less than 4.8% and the remaining 4% had large fluctuations caused mainly by the rainfalls.

Seasonal variation in size distributions for ionic components in the atmospheric aerosol (대기중 입자상물질에 있어서 이온성분의 입도별 계절변동)

  • 김희강;조기철;이주희;최민규;마창진;강충민;여현구
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.55-61
    • /
    • 1996
  • Measurements of the seasonal variations of concentration and size distribution of TSP, $SO_4^{2-}, NO_3^-, Cl^-, NH_4^+, Na^+, K^+, Ca^{2+}$ and $Mg^{2+}$ were made by Andersen air sampler from May 1995 to April 1996 in Seoul. The size distribution of these ions was divided into four patterns. 1) Distribution was concentrated on fine particles over a year such as $NO_3^-$ component, 2) Distribution was predominated in coarse particles fraction over a year such as $Mg^{2+}$ and $Ca^{2+}$ components, 3) Distribution was differerent from various seasons such as $NH_4^+, SO_4^{2-}, Cl^-$ and $K^+$ components, 4) Distribution was bi-modal such as $Na^+$.

  • PDF

Surface Synoptic Climatic Patterns for Heavy Snowfall Events in the Republic of Korea (우리나라 대설 시 지상 종관 기후 패턴)

  • Choi, Gwang-Yong;Kim, Jun-Su
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.3
    • /
    • pp.319-341
    • /
    • 2010
  • The purposes of this study are to classify heavy snowfall types in the Republic of Korea based on fresh snowfall data and atmospheric circulation data during the last 36(1973/74-2008/09) snow seasons and to identify typical surface synoptic climate patterns that characterize each heavy snowfall type. Four synoptic climate categories and seventeen regional heavy snowfall types are classified based on sea level pressure/surface wind vector patterns in East Asia and frequent spatial clustering patterns of heavy snowfall in the Republic of Korea, respectively. Composite analyses of multiple surface synoptic weather charts demonstrate that the locations and intensity of pressure/wind vector mean and anomaly cores in East Asia differentiate each regional heavy snowfall type in Korea. These differences in synoptic climatic fields are primarily associated with the surge of the Siberian high pressure system and the appearance of low pressure systems over the Korean Peninsula. In terms of hemispheric atmospheric circulation, synoptic climatic patterns in the negative mode of winter Arctic Oscillation (AO) are also associated with frequent heavy snowfall in the Republic of Korea at seasonal scales. These results from long-term synoptic climatic data could contribute to improvement of short-range or seasonal prediction of regional heavy snowfall.

Seasonal Fluctuation and Vertical Microdistribution of Drosophilid Flies Dwelling in the Broad-Leaved Forests on Cheju-Do (Quelpart Island)* (제주도 활엽수림에 서식하는 초파리의 계절에 따른 변동과 수직 미분포)

  • 김원택
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.325-336
    • /
    • 1996
  • Community organization of the drosophilid flies was investigated with respect to the seasonal variation in species abundance and vertical microdistribution on the basis of the trapped collections in the two natural forests on Cheju-do from May to October 1994. The dominant species were Drosophila bizonata, D. curviceps, D. lutescens, D. angu leris, D. tsigana and D. immigrans in the annual collections. The pattern in seasonal changes of the dominant species was similar at the two survey sites. Seasonal fluctuation in the species diversity was more affected by evenness than by species richness (number of species). The seasonal variation of abundance showed an unimodal pattern in all of the dominant species. The seasonal patterns of vertical microdistribution revealed difference in some of the dominant species between the two survey sites. These results suggest that the predominant species in the forest avoid niche overlap by means of seasonal separation of breedings and that the vertical microdistribution is strongly affected by factors associated with season and vertical site in the deep wooded forests.

  • PDF

Stable Isotope Profiles of the Fossil Mollusks from Marginal Marine Environment: Is Carbon from the Seasonal Methanogenesis?

  • Khim, Boo-Keun;Bock, Kathy-W.;Krantz, David-E.
    • Journal of the korean society of oceanography
    • /
    • v.32 no.2
    • /
    • pp.63-68
    • /
    • 1997
  • Stable isotope profiles with fine-scale resolution were constructed from the fossil mollusk shells, Mercernaria mercernaria, obtained from the late Pleistocene transgressive deposits of Gomez Pit, Virginia, USA. Incremental sampling were made along the axis of maximum growth to provide high-resolution ${\delta}^{18}$O and ${\delta}^{13}$C records. The ${\delta}^{18}$O shell profiles exhibit a series of pronounced cycles in the overall amplitude, corresponding to strong seasonal variations in temperature, which is apparently positive environmental variable. Contrasts between the patterns of ${\delta}^{18}$O and ${\delta}^{13}$C profiles reflect the relationship influencing the seasonal carbon cycling in the shallow marine environment. Positive anomalies of the ${\delta}^{13}$C values during the summer were observed to be out of phase with the ${\delta}^{18}$O profile. Such relatively heavier carbon source may be alternated due to seasonal methanogenesis during the summer. A hypothesized methane-based system may be operated in the shallow and marginal marine environment, resulting in a ${\delta}^{13}$C enriched bicarbonate pool, in which the heavier isotope seems to be incorporated to the shell carbonate.

  • PDF

Seasonal Variation of PM2.5 and Its Major Ionic Components in an Urban Monitoring Site

  • Ghosh, Samik;Shon, Zang-Ho;Kim, Ki-Hyun;Song, Sang-Keun;Jung, Kweon;Kim, Nam-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • The ionic composition of $PM_{2.5}$ samples was investigated by their datasets of cationic ($Na^+$, $NH_4^+$, $K^+$, $Mg^{2+}$, and $Ca^{2+}$) and anionic components ($Cl^-$, $NO_3^-$, and $SO_4^{2-}$) along with relevant environmental parameters collected from an urban monitoring site in Korea at hourly intervals in 2010. The mean (and SD) annual concentration of $PM_{2.5}$ was computed as 25.3 ${\mu}g\;m^{-3}$ with the wintertime maximum. In addition, sum concentrations (neq $m^{-3}$) of five cationic species (291) were slightly lower than 3 anionic species (308). Most cations exhibited the highest seasonal values in spring, while anions showed more diversified seasonal patterns. According to PCA, five major source categories were apparent with the relative dominance of secondary inorganic aerosols (SIA). The results of our study suggest consistently that the distribution of ionic constituents in an urban area is affected by the combined effects of both natural and anthropogenic processes.

Application of Representative $PM_{2.5}$ Source Profiles for the Chemical Mass Balance Study in Seoul

  • Kang, Choong-Min;Kang, Byung-Wook;SunWoo, Young;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.32-43
    • /
    • 2008
  • Source samples were collected to construct source profiles for 9 different source types, including soil, road dust, gasoline/diesel-powered vehicles, a municipal incinerator, industrial sources, agricultural/biomass burning, marine aerosol, and a coal-fired power plant. Seasonal profiles for 'Chinese aerosol', aerosols derived from the urban area of China, were reconstructed from seasonal $PM_{2.5}$ compositions reported in Beijing, China. Ambient $PM_{2.5}$ at a receptor site was also measured during each of the four seasons, from April 2001 to February 2002, in Seoul. The Chemical Mass Balance receptor model was applied to quantify source contributions during the study period using the estimated source profiles. Consequently, motor vehicle exhaust (33.0%), in particular 23.9% for diesel-powered vehicles, was the largest contributor affecting the $PM_{2.5}$ levels in Seoul, followed by agricultural/biomass burning (21.5%) and 'Chinese aerosol' (13.1%), indicating contributions from long-range transport. The largest contributors by season were: for spring, 'Chinese aerosol' (31.7%); for summer, motor vehicle exhaust (66.9%); and for fall and winter, agricultural/biomass burning (31.1% and 40.1%, respectively). These results show different seasonal patterns and sources affecting the $PM_{2.5}$ level in Seoul, than those previously reported for other cities in the world.