• 제목/요약/키워드: seasonal ARIMA models

검색결과 47건 처리시간 0.019초

계절형 ARIMA-Intervention 모형을 이용한 여행목적 별 제주 관광객 수 예측에 관한 연구 (A study on demand forecasting for Jeju-bound tourists by travel purpose using seasonal ARIMA-Intervention model)

  • 송준모
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.725-732
    • /
    • 2016
  • 본 연구에서는 제주를 방문하는 관광객 수를 여행목적 별로 분석하였다. 여행목적은 "휴양 및 관람", "레저 및 스포츠", 그리고 "회의 및 업무"를 위한 여행으로 구분되어 있으며, 2005년 1월부터 2016년 3월까지 자료를 이용하였다. 2015년 5월에 발생한 메르스 (MERS, 중동호흡기증후군) 사태의 영향을 반영하기 위하여 계절형 ARIMA-Intervention 모형을 이용한 개입분석을 수행하였다. 분석결과 메르스사태는 "레저 및 스포츠"와 "회의 및 업무"를 목적으로하는 관광객 수에 6월 한 달간 영향을 끼친 것으로 나타났으며, 이로 인하여 이 기간 동안 30%에서 40% 정도의 관광객이 감소한 것으로 추정되었다. 반면, "휴양 및 관람"에서는 메르스사태의 영향이 유의하지 않은 것으로 나타났다. 본 결과를 토대로 향후 1년의 월별 관광수요를 예측하여 보았다.

시계열 모형을 이용한 부산 북항의 물동량 예측 (The Forecast of the Cargo Transportation for the North Port in Busan, using Time Series Models)

  • 김정훈
    • 한국항만경제학회지
    • /
    • 제24권2호
    • /
    • pp.1-17
    • /
    • 2008
  • 본 연구에서는 부산 북항의 장래 물동량을 시계열 모형을 이용하여 정량적으로 예측하였다. 항만물동량을 화물의 특성에 따라 크게 컨테이너, 유류, 일반화물 3가지로 구분하였다. 북항의 물동량 예측에서는 먼저 기존 물동량의 계절지수를 산정하고, 지수평활모형과 ARIMA모형 중에서 최적모형을 선정하였다. 이를 통해 추정된 각 화물별 해당연도의 물동량에 계절지수를 적용하여 물동량을 월별로 산출하였다. 2011년과 2015년의 컨테이너 예측 물동량은 각각 21,390만톤, 23,144만톤이며, 이는 2007년 대비 2011년과 2015년에 각각 약 7.4%, 16.2%로 증가한 것이다. 유류화물의 물동량은 동일하게 약 705만톤으로 2007년 대비 약 4.7% 증가하는 것으로 나타났으나 2002년의 물동량보다는 낮을 것으로 예측되었다. 그리고 일반화물의 물동량은 약 805만톤으로 2007년 대비 2011년과 2015년에 각각 약 0.74%, 0.75% 감소할 것으로 나타나 2007년과 거의 비슷한 수준을 유지할 것으로 예측되었다. 향후 북항에서 처리될 것으로 예측된 전체 항만물동량은 2011년과 2015년에 각각 22,900만톤과 24,654만톤으로 예상되었다. 이는 2007년 대비 각각 약 7.0%, 15.2% 증가한 물동량이다. 이러한 물동량의 증가는 컨테이너화물의 견인차 역할로 인한 결과로 예측되었다. 또한 북항 전체의 장래 월별 물동량을 보면 4월에 가장 많고, 2월에는 가장 적을 것으로 나타났다.

  • PDF

시계열모형에 의한 전력판매량 예측 (Prediction of Electricity Sales by Time Series Modelling)

  • 손영숙
    • 응용통계연구
    • /
    • 제27권3호
    • /
    • pp.419-430
    • /
    • 2014
  • 전력수급의 정확한 예측은 국민들의 일상적 생활 유지, 산업활동, 그리고 국가경영을 위하여 매우 중요하다. 본 연구에서는 시계열모형화에 의해 전력판매량을 예측한다. 실제 자료분석을 통하여 입력시계열로서 냉난방도일과 개입변수로 펄스함수를 사용한 전이함수모형이 다른 시계열모형에 비해서 제곱근평균제곱오차 및 평균절대오차의 의미에서 더 우수하였다.

모수 절약 주기적 자기회귀 모형에 관한 연구 (A study on parsimonious periodic autoregressive model)

  • 이지호;성병찬
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.133-144
    • /
    • 2016
  • 본 논문에서는 주기적 자기회귀(periodic autoregressive) 모형에서 모수의 수를 줄이기 위한 모수 절약 주기적 자기회귀 모형을 연구하였다. 제안된 모수 절약 모형은 실증분석에서 실업률을 이용하여 기존의 계절 시계열 모형과 비교를 통하여 그 성능을 평가하였다. 모수 절약 구조를 부여하기 위하여 계절성에서 공통된 패턴을 찾아내는 방법을 사용하였으며 기존 주기적 자기회귀 모형과의 통계적 차이 유무는 LR 검정을 통해 확인하였다. 그 결과, 중장기적으로 주기적 자기회귀 모형이 기존의 계절시계열 모형보다 우수한 예측성능을 보였으며, 특히 모수 절약 주기적 자기 회귀 모형의 사용은 기존의 주기적 자기회귀 모형보다 우수한 예측성능을 나타내는 것을 확인하였다.

서울시 광화물 지역의 대기질 변동 특성의 추계학적 분석 (Stochastic Properties of Air Quality Variation in Seoul)

  • 한홍;김영식
    • 한국환경보건학회지
    • /
    • 제17권2호
    • /
    • pp.1-8
    • /
    • 1991
  • The stochastic variance and structures of time series data on air quality were examined by employing the techniques of autocorrelation function, variance spectrum, fourier series, ARIMA model. Among the air quality properties of atmosphere, SO$_{2}$ is one of the most siginificant and widely measured parameters. In the study, the air quality data were included hourly observations on SO$_{2}$ TSP and O$_{3}$. The data were measured by automatic recording instrument installed in Kwanghwamoon during February and March in 1991. The results of study were as follows 1. Hourly air quality series varied with the domiant 24 hour periodicity and the 12 hour periodic variation was also observed. 2. The correlation coefficients between SO$_{2}$ and O$_{3}$ is -0.4735. 3. In simulating or forecasting variation in SO$_{2}$ ARIMA models are on a useful tools. The multiplicative seasonal ARIMA (1, 1, 0) (0, 2, 1)$_{24}$ model provided satisfactory results for hourly SO$_{2}$ time series.

  • PDF

트렌드와 계절성을 가진 시계열에 대한 순수 모형과 하이브리드 모형의 비교 연구 (Comparison Studies of Hybrid and Non-hybrid Forecasting Models for Seasonal and Trend Time Series Data)

  • 정철우;김명석
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.1-17
    • /
    • 2013
  • 본 연구에서는 시계열 예측을 위해 선형 모형과 비선형 모형의 하이브리드 모형 및 순수 모형의 성과를 비교 평가하였다. 이를 위해 5가지 서로 다른 패턴을 가지는 데이터를 생성하여 시뮬레이션을 진행하였다. 본 연구에서 고려한 선형 모형은 AR(autoregressive model)과 SARIMA(seasonal autoregressive integrated moving average model)이고 비선형 모형은 인공신경망(artificial neural networks model)과 GAM(generalized additive model)이다. 특히, GAM은 여러 장점에도 불구하고 시계열 예측을 위한 비선형 모형으로 기존 연구들에서는 거의 쓰이지 않았던 모형이다. 시뮬레이션 결과, seasonality를 가지는 시계열에 대해서는 AR 및 AR-AR 모형이, trend를 가지는 시계열에 대해서는 SARIMA 및 SARIMA와 다른 모형의 하이브리드 모형이 다른 모형에 비해 높은 성과를 보였다. 한편, 인공신경망과 GAM을 비교하면, 트렌드와 계절성이 더해진 시계열에 대해 SARIMA와 GAM의 하이브리드 모형이 거의 모든 노이즈(noise) 수준에 대해 높은 성과를 보인 반면, 노이즈 수준이 미미한 경우에 한해 SARIMA와 인공신경망의 하이브리드 모형이 높은 성과를 보였다.

항공 수요예측 및 고객 수하물 컨베이어 확장 모형 연구 : 인천공항을 중심으로 (Air Passenger Demand Forecasting and Baggage Carousel Expansion: Application to Incheon International Airport)

  • 윤성욱;정석재
    • 대한교통학회지
    • /
    • 제32권4호
    • /
    • pp.401-409
    • /
    • 2014
  • 본 연구는 시설 확장비용과 승객들의 지체시간 감소에 따른 편익을 고려한 항공의 핵심 시설 확장 문제를 다루고자 한다. 이를 위해 우리는 시계열 예측방법으로 널리 알려진 ARIMA model를 활용하여 계절 및 주기를 갖는 항공피크 수요를 예측한다. 승객이 공항에 도착한 후에 공항 내에서의 승객들의 흐름과 지체를 고려하여 실제 지체 편익을 추정하기 위해 이산사건 시뮬레이션 모형을 설계한다. 비용과 편익 간의 상충관계를 통해 우리는 컨베이어의 경제적 확장 대수를 결정한다. 인천공항의 사례를 활용한 실험이 수행되었으며, 실험 결과는 본 접근방법이 계절에 따른 승객의 도착 유형과 공항 내의 동적인 흐름을 반영한 시설의 확장 문제를 해결하는 데 효과적임을 보인다.

국내 3대 주요 컨테이너항만의 장래 컨테이너선박 교통량 추정 (The Estimation of the Future Container Ship Traffic for Three Major Ports in Korea)

  • 김정훈
    • 한국항해항만학회지
    • /
    • 제31권5호
    • /
    • pp.353-359
    • /
    • 2007
  • 컨테이너항만의 물동량이 증가하는 추세에서 장래에 발생될 컨테이너선박의 교통량을 예측한다면 항만의 효율적인 계획과 운영관리를 사전에 수립할 수 있다. 해상교통 관점에서도 컨테이너선박의 입 출항 척수를 장기적으로 추정하고, 이를 근거로 해상교통수요를 원활하게 처리할 수 있는 합리적인 방안을 계획할 수 있다. 따라서 본 연구에서는 전국항만 기본계획에서 제시된 부산항, 광양항, 인천항의 컨테이너 물동량 예측자료를 토대로 각 항만에 대한 컨테이너선의 장래 입 출항 교통량을 추정하였다. 이를 위해서 컨테이너선박의 척당 물동량 추세를 ARIMA 모형을 통해 예측하고, 계절지수를 산출하였다. 이와 같이 예측된 척당 물동량을 2011년, 2015년, 그리고 2020년의 컨테이너 물동량에 대비시켜 발생예상의 해상교통량을 추정하였다.

계절 ARIMA 모형을 이용한 104주 주간 최대 전력수요예측 (Weekly Maximum Electric Load Forecasting for 104 Weeks by Seasonal ARIMA Model)

  • 김시연;정현우;박정도;백승묵;김우선;전경희;송경빈
    • 조명전기설비학회논문지
    • /
    • 제28권1호
    • /
    • pp.50-56
    • /
    • 2014
  • Accurate midterm load forecasting is essential to preventive maintenance programs and reliable demand supply programs. This paper describes a midterm load forecasting method using autoregressive integrated moving average (ARIMA) model which has been widely used in time series forecasting due to its accuracy and predictability. The various ARIMA models are examined in order to find the optimal model having minimum error of the midterm load forecasting. The proposed method is applied to forecast 104-week load pattern using the historical data in Korea. The effectiveness of the proposed method is evaluated by forecasting 104-week load from 2011 to 2012 by using historical data from 2002 to 2010.

GENERALISED PARAMETERS TECHNIQUE FOR IDENTIFICATION OF SEASONAL ARMA (SARMA) AND NON SEASONAL ARMA (NSARMA) MODELS

  • M. Sreenivasan;K. Sumathi
    • Journal of applied mathematics & informatics
    • /
    • 제4권1호
    • /
    • pp.135-135
    • /
    • 1997
  • Times series modeling plays an important role in the field of engineering, Statistics, Biomedicine etc. Model identification is one of crucial steps in the modeling of an AutoRegreesive Moving Average(ARMA(p, q)) process for real world problems. Many techniques have been developed in the literature (Salas et al., McLeod et al. etc.) for the identification of an ARMA(p, q) Model. In this paper, a new technique called The Generalised Parameters Technique is formulated for seasonal and non-seasonal ARMA model identification. This technique is very simple and can e applied to any given time series. Initial estimates of the AR parameters of the ARMA model are also obtained by this method. This model identification technique is validated through many theoretical and simulated examples.