References
- Box, G. E. P. and Tiao, G. C. (1975). Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical Association, 70, 70-79. https://doi.org/10.1080/01621459.1975.10480264
- Cho, S., Sohn, Y. and Seong, B. (2016). Time series analysis, Yulgok book publishing Co., Seoul.
- Choi, K. and Kim, J. (2001). A study on forecasting of overseas tour - Gravity model and regression model. Journal of the Korean Data & Information Science Society, 12, 103-111.
- Cryer, J. D. and Chan, K. S. (2008). Time series analysis: With applications in R, Springer-Verlag, New York.
- Han, G. H., Jung, J. and Yoo, J. K. (2014). A study on prediction for attendances of Korean pro baseball games using covariates. Journal of the Korean Data & Information Science Society, 25, 1481-1489. https://doi.org/10.7465/jkdi.2014.25.6.1481
- Huh, H. J. and Kim, H. C. (2001). Forecasting demand for Jeju-bound tourist: An application of intervention method. Journal of Tourism Sciences, 25, 27-42.
- Kim, S. and Lee, J. H. (2011). A Study on the seasonal effects of the tourism demand forecasting models. Korean Journal of Applied Statistics, 24, 93-102. https://doi.org/10.5351/KJAS.2011.24.1.093
- Kim, S. and Seong, B. (2011). Intervention analysis of Korea tourism data. Korean Journal of Applied Statistics, 24, 735-743. https://doi.org/10.5351/KJAS.2011.24.5.735
- Lee, C. K, Song, H. J and Mjelde J.W. (2008). The forecasting of international Expo tourism using quantitative and qualitative techniques. Tourism Management, 29, 1084-1098. https://doi.org/10.1016/j.tourman.2008.02.007
- Phillips, P. C. B. and Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75, 335-346. https://doi.org/10.1093/biomet/75.2.335
- Ryu, S. R. and Kim, J. T. (2013). Time series regression model for forecasting the number of elementary school teachers. Journal of the Korean Data & Information Science Society, 24, 321-332. https://doi.org/10.7465/jkdi.2013.24.2.321
- Shin, Y. and Yoon, S. (2016). Electricity forecasting model using specific time zone. Journal of the Korean Data & Information Science Society, 27, 275-284. https://doi.org/10.7465/jkdi.2016.27.2.275
- Song, D. Y. (2015). A study on forecasting the number of tourist in Jeju island focusing on travel purposes and types with seasonal ARIMA models, Master Thesis, Jeju national university, Jeju.
- Song, H. and Li, G. (2008). Tourism demand modelling and forecasting - A review of recent research. Tourism Management, 29, 203-220. https://doi.org/10.1016/j.tourman.2007.07.016
Cited by
- 계절형 ARIMA-Intervention 모형을 이용한 한국 편의점 최적 매출예측 vol.14, pp.11, 2016, https://doi.org/10.15722/jds.14.11.201611.83
- 개선된 유전자 역전파 신경망에 기반한 예측 알고리즘 vol.28, pp.6, 2017, https://doi.org/10.7465/jkdi.2017.28.6.1327
- The Study on the Tourism Demand Characteristics and Forecasting of Jeju Island vol.43, pp.4, 2016, https://doi.org/10.32780/ktidoi.2018.43.4.111
- 다중개입 계절형 ARIMA 모형을 이용한 KTX 수송수요 예측 vol.32, pp.1, 2019, https://doi.org/10.5351/kjas.2019.32.1.139
- Visitor arrivals forecasts amid COVID-19: A perspective from the Europe team vol.88, pp.None, 2021, https://doi.org/10.1016/j.annals.2021.103182
- The impact of the Middle East Respiratory Syndrome coronavirus on inbound tourism in South Korea toward sustainable tourism vol.29, pp.7, 2016, https://doi.org/10.1080/09669582.2020.1797057