• Title/Summary/Keyword: sea-level fluctuations

Search Result 52, Processing Time 0.028 seconds

A Geoacoustic Model at the YMGR-102 Long-core Site in the Middle of the Yellow Sea

  • Ryang, Woo-Hun;Kim, Seong-Pil
    • Journal of the Korean earth science society
    • /
    • v.43 no.4
    • /
    • pp.520-531
    • /
    • 2022
  • The Yellow Sea experienced glacio-eustasy sea-level fluctuations during the Quaternary period. In the middle part of the Yellow Sea, the Quaternary successions were accumulated by alternating terrestrial, paralic, and shallow marine deposits that reflected the fluctuating sea levels. A long core of 69.2 m was acquired at the YMGR-102 site (33°50.1782'N and 123°48.3019'E) at a depth of 72.5 m in the middle of the Yellow Sea. A four-layered geoacoustic model was reconstructed for the sedimentary succession. It was based on seismic characteristics from 3.5 kHz SBP and air-gun seismic profiles and 96 grain-size properties in the core sample from YMGR-102. For the underwater simulation and experiments, the in-situ P-wave speeds were calculated using the sound speed ratio of the Hamilton method. The geoacoustic model of YMGR-102 can contribute to the reconstruction of geoacoustic models, reflecting the vertical and lateral variability of the acoustic properties in the continental shelf of the middle Yellow Sea.

Simple and Multigrid Models for Hydraulic Study on Coffering a Tide Embankment (방조제 체절 수리 검토를 위한 단순 모형과 다중격자 모형)

  • 이정렬;고진석;이태환
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.309-318
    • /
    • 2001
  • A zero-dimensional simple model is presented to predict the currents in the opening channel of tide embankment and the sea-level response of the interior basin to ocean sea level. In general, a tidal embayment has wide tidal flats so that the effect of tidal flats has been taken into account by formulating the volute variation vs. depth. The model has been verified through the comparison with the 2-dimensional depth-integrated model which can resolve the small area by using the multigrid method. As the results applied to the storage of dredged material of Incheon North Harbour, the results indicate that both models adequately describe the sea-level and current fluctuations in the storage.

  • PDF

Insulation Characteristics Evaluation of Submarine Cables Inside the J-Tube of Offshore Wind Farms (해상풍력단지 J-Tube 내부 해저케이블의 절연 특성 평가)

  • Seung-Won Lee;Jin-Wook Choe;Hae‑Jong Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.570-575
    • /
    • 2023
  • Demand and necessity for eco-friendly offshore wind farms have been increasing. Research on submarine cables is constantly being considered for a reliable and stable power transmission. This study aimed to evaluate the thermal aging characteristic of submarine cables inside the J-tube of offshore wind farms. In this study, a submarine cable was set in three sections: The first is the part exposed to the air above the sea level at high temperature. The second is the section exposed to repeated temperature fluctuation as the sea level rises and falls. The third is the part submerged at low temperature below the sea level. Aged samples were tested by using the method of electrical evaluation to obtain insulation characteristics. The experimental results show that the dielectric breakdown of the sample with temperature fluctuation was 7% lower than the sample with a constant temperature; thereby, demonstrating that the section where the temperature fluctuation occurred in the submarine cables was weaker than the other. The sections of submarine cable with temperature fluctuations are believed as a weak point during operation; therefore, this part should be monitored preferentially.

Holocene climate characteristics in Korean Peninsula with the special reference to sea level changes (해수면 변동으로 본 한반도 홀로세(Holocene) 기후변화)

  • Hwang, Sangill;Yoon, Soon-Ock
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.235-246
    • /
    • 2011
  • Sea level fluctuations during the Holocene reconstructed by the results of age dating, microfossils researches and sedimentary facies from coastal alluvial plains contain the valuable informations on climatic changes. The sea level during 'maximum phase of transgression' during 6,000~5,000 yr BP was slightly higher than the present by approximately 0.8~1.0 m and the summer temperature conditions seemed to be higher than those of the present by 2~3℃ in the Central Europe when the period of 'Climatic Optimum' might be dominant. The sea level in Korean Peninsula was assumed by 0.8~1.0 m higher at that time compared to the present and climate seemed to be warmer. At 2,000~1,800 yr BP in Korean Peninsula, the sea level reached the higher stand than the present by approximately 1.1~1.3 m and the climatic conditions might be warm similar to the period of 'Climatic Optimum'. Although the temperature in the Central Europe during the period of 'Subboreal' was about 2~3℃ cooler, it is supposed that the sea level in Korean Peninsula was relatively higher than the present. The sea level at 2,300 yr BP might be similar to that of the present, which was the lowest level since the mid-Holocene. From the fact, climatic environment during the cold period might not be reflected exactly in the sea level.

Numerical modeling of seawater flow through the flooding system of dry ocks

  • Najafi-Jilani, A.;Naghavi, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.1 no.2
    • /
    • pp.57-63
    • /
    • 2009
  • Numerical simulations have been carried out on the flooding system of a dry located at the south coasts of Iran. The main goals of seawater flow haracteristics in the intake channels conditions of the flooding system are imposed in the modeling. The upstream boundary condition is the tidal fluctuations of sea water level. At the downstream, the gradually rising water surface elevation in the dry described in a transient boundary condition. The numerical results are compared with available laboratory a good agreement is obtained. The seawater discharge through the flooding system and the required time to filling up the dry dock is determined at the worst case. The water current velocity and pressure on the rigid boundaries are discussed.

The Change of the Depositional Environment on Dodaecheon River Basin during the Middle Holocene (Holocene 中期에 있어서 道垈川流域의 堆積 環境 變化)

  • Hwang, Sang-Ill;Yoon, Soon-Ock;Jo, Wha-Ryong
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.4
    • /
    • pp.403-420
    • /
    • 1997
  • Dodaecheon is a small river flowing into Asan Bay which is located in the middle part of the West Coast of the Korean Penninsula. We have investigated the change of depositional environment in Dodaecheon river basin during the middle Holocene. In the course of the research, the methods such as boring, radiocarbon dating, diatom and pollen analysis were employed. The Holocene deposits of the studied area are consisted of peat and gray silt layers, and contain many plooen and diatom fossils. Based on the results of diatom and pollen analysis, we conclude that the gray silt layers were sedimented owing to the transgression in the middle Holocene, and the peat layers by the regression or stabilzation of the sea level. The shoreline in the Post Glacial Age reached to the rivemouth of Dodaecheon at ca. 7,000 years before present(y. BP) and at that time the high tide sea-level(mean high water level of spring tide) rose to ca. 3m above present mean sea-level(m.a.s.l.). Since then to ca. 6,000y. BP, the high tide sea-level arrived to ca. 5m above present mean sea level further repeating minor transgressions and regressions. The peat layers of the coastal lowland of the West Coast were formed by the sea level fluctuations from 7,000 y. BP to 3,000 y. BP, and they were distributed 2 to 6 meters higher than the mean sea level of the present day. Most of them sedimented due to the high tide level are older and higher than those of the East Coast which were formed at the swale in the low tidal range environment.

  • PDF

Warm Water Circulation and its Origin by Sea Level Fluctuation and Bottom Topography (해수면변화와 해저지형에 의한 난류수의 순환과 그 기원)

  • PARK Ig-Chan;OH Im Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.677-697
    • /
    • 1995
  • The analysis of long- period sea level variations with tidal record data around Korea, Japan, and Russia shows that about half of the variations are due to atmospheric influences. The sea level variation by water movements is the largest in the coasts along the Tsushima Current, and becomes smaller in the distant areas. It suggests that the sea level varications are related with the Tsushima Current. The effect of sea level variations to ocean circulation has been studied with a numerical model allowing barotropic sea level fluctuations, like the result with GCM (Semtner) model by Pang et al.(1993), the present model also shows that waters basically flow along isobaths over the last China Sea after geostyophic adjustment around Taiwan. However, barotropic sea level fluctuation makes the basic circulation in the Yellow Sea, which waters flow into the central Yellow Sea and out along the west coast of the Korean Peninsula. Besides this, barotropic sea level fluctuation makes long period waves over the shelf area as the Kuroshio varies. By the waves, the basic circulation in the Yellow Sea is disturbed, so that the flow pattern of oppositely flowing into the Yellow Sea along the west roast of the Korean Peninsula appears. In the Yellow Sea circulation, it seems that northwest winds strengthen the basic circulat ion In winter, and southeast winds strengthen the disturbed circulation in summer. Another point appeared by the long period wave is that the Tsushima Current possibly originates in different areas. There have been two opposing argues on the area in which the Tsushima Current originates the southwest sea of Kyushu Island and the adjacent sea of Taiwan. Through this study, we found that both of them seem to be important areas for the origin of the Tsushima Current, and one of them is possibly strengthened by long period waves. The long period waves given by the variation of the Kuroshio Current in the adjacent sea of Taiwan propagate to the Korea Strait as forced waves. The wave continuously propagates to the last Sea through the eastern channel, but reflects in the western channel due to bottom topography. The reflected waves propagate southwestward along the last China Sea as free waves and determine the sea level variations with forced waves.

  • PDF

Paleoenvironmental Changes in the Northern East China Sea and the Yellow Sea During the Last 60 ka

  • Nam, Seung-Il;Chang, Jeong-Hae;Yoo, Dong-Geun
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.165-165
    • /
    • 2003
  • A borehole core ECSDP-102 (about 68.5 m long) has been investigated to get information on paleoenvironmental changes in response to the sea-level fluctuations during the period of late Quaternary. Several AMS $\^$14/C ages show that the core ECSDP-102 recorded the depositional environments of the northern East China Sea for approximately 60 ka. The Yangtze River discharged huge amounts of sediment into the northern East China Sea during the marine isotope stage (MIS) 3. In particular, $\delta$$\^$13/Corg values reveal that the sedimentary environments of the northern East China Sea, which is similar to the Holocene conditions, have taken place three times during the MIS 3. It is supported by the relatively enriched $\delta$$\^$13/Corg values of -23 to -21$\textperthousand$ during the marine settings of MIS 3 that are characterized by the predominance of marine organic matter akin to the Holocene. Furthermore, we investigated the three Holocene sediment cores, ECSDP-101, ECSDP-101 and YMGR-102, taken from the northern East China Sea off the mouth of the Yangtze River and from the southern Yellow Sea, respectively. Our study was focused primarily on the onset of the post-glacial marine transgression and the reconstructing of paleoenvironmental changes in the East China Sea and the Yellow Sea during the Holocene. AMS $\^$14/C ages indicate that the northern East China Sea and the southern Yellow Sea began to have been flooded at about 13.2 ka BP which is in agreement with the initial marine transgression of the central Yellow Sea (core CC-02). $\delta$$\^$18/O and $\delta$$\^$13/C records of benthic foraminifera Ammonia ketienziensis and $\delta$$\^$13/Corg values provide information on paleoenvironmental changes from brackish (estuarine) to modem marine conditions caused by globally rapid sea-level rise since the last deglaciation. Termination 1 (T1) ended at about 9.0-8.7 ka BP in the southern and central Yellow Sea, whereas T1 lasted until about 6.8 ka BP in the northern East China Sea. This time lag between the two seas indicates that the timing of the post-glacial marine transgression seems to have been primarily influenced by the bathymetry. The present marine regimes in the northern East China Sea and the whole Yellow Sea have been contemporaneously established at about 6.0 ka BP. This is strongly supported by remarkably changes in occurrence of benthic foraminiferal assemblages, $\delta$$\^$18/O and $\delta$$\^$13/C compositions of A. ketienziensis, TOC content and $\delta$$\^$13/Corg values. The $\delta$$\^$18/O values of A. ketienziensis show a distinct shift to heavier values of about 1$\textperthousand$ from the northern East China Sea through the southern to central Yellow Sea. The northward shift of $\^$18/O enrichment may reflect gradually decrease of the bottom water temperature in the northern East China Sea and the Yellow Sea.

  • PDF

Variability of Sea Levels Associated with the Tsushima Current in the Korea Strait (대마난류와 관련된 대한해협 해수면의 변동)

  • LEE Jae-Chul;CHO Kyu-Dae;KIM Soon-Young;KIM Ho-Kyun;SHIM Tae-Bo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.6
    • /
    • pp.437-449
    • /
    • 1991
  • Time series of barometrically adjusted sea level at Pusan, Izuhara and Hakada are analyzed to study the fluctuations of the Tsushima Current through the Korea Strait. Variability of sea levels and their differences is divided into two parts with respect to the frequency of 0.01 or 0.02 cycles per day(cpd) At lower frequency, both of sea levels and sea level difference(SLD) are coherent and in phase to each other. Pusan has smaller seasonal variations in sea level than other two stations because the effects of geostrophic current and prevailing wind have a negative influence on the seasonal thermosteric contribution to sea level change. Low frequency variability of SLD thus of the Tsushima Current is much greater in the western channel. For higher frequency parts, SLD in the eastern channel has larger variability and is not coherent with that of the western channel. Sea levels at Pusan and Izuhara are $180^{\circ}$ out of phase with SLD in the western and eastern channel respectively, whereas the Hakada level is in phase. This result indicates that eastern channel has a normal response to the along-channel winds and cross-channel geostrophy because Izuhara faces the eastern channel.

  • PDF

Late Quaternary Sequence Stratigraphy in Kyeonggi Bay, Mid-eastern Yellow Sea (황해 중동부 경기만의 후기 제4기 순차층서 연구)

  • Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.242-258
    • /
    • 2012
  • The Yellow Sea has sensitively responded to high-amplitude sea-level fluctuations during the late Quaternary. The repeated inundation and exposure have produced distinct transgression-regression successions with extensive exposure surfaces in Kyeonggi Bay. The late Quaternary strata consist of four seismic stratigraphic units, considered as depositional sequences (DS-1, DS-2, DS-3, and DS-4). DS-1 was interpreted as ridge-forming sediments of tidal-flat and estuarine channel-fill facies, formed during the Holocene highstand. DS-2 consists of shallow-marine facies in offshore area, which was formed during the regression of Marine Isotope Stage (MIS)-3 period. DS-3 comprises the lower transgressive facies and the upper highstand tidal-flat facies in proximal ridges and forced regression facies in distal ridges and offshore area. The lowermost DS-4 rests on acoustic basement rocks, considered as the shallow-marine and shelf deposits formed before the MIS-6 lowstand. This study suggests six depositional stages. During the first stage-A, MIS-6 lowstand, the Yellow Sea shelf was subaerially exposed with intensive fluvial incision and weathering. The subsequent rapid and high amplitude rise of sea level in stage-B until the MIS-5e highstand produced transgressive deposits in the lowermost part of the MIS-5 sequence, and the successive regression during the MIS-5d to -5a and the MIS-4 lowstand formed the upperpart of the MIS-5 sequence in stage-C. During the stage-D, from the MIS-4 lowstand to MIS-3c highstand period, the transgressive MIS-3 sequence formed in a subtidal environment characterized by repetitive fluvial incision and channel-fill deposition in exposed area. The subsequent sea-level fall culminating the last glacial maximum (Stage-E) made shallow-marine regressive deposits of MIS-3 sequence in offshore distal area, whereas it formed fluvial channel-fills and floodplain deposits in the proximal area. After the last glacial maximum, the overall Yellow Sea shelf was inundated by the Holocene transgression and highstand (Stage-F), forming the Holocene transgressive shelf sands and tidal ridges.