• Title/Summary/Keyword: screw motion

Search Result 167, Processing Time 0.031 seconds

Thermal Expansion Analysis of the Ball Screw System by Finite Difference Methods (유한차분법을 이용한 볼스크류 시스템의 열팽창 해석)

  • Jeong, Seong-Jong;Park, Jeong-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.44-57
    • /
    • 1992
  • Ball screw systems have been used for positioning elements of machine tools and precision tables. In order to maintain the high rigidity and accuracy, a certain amount of preload is applied between the nut and the screw of ball screw systems. However, large amount of the preload oncreases the frictional heat. The temperature rises remarkably at the high speed motion, and the thermal expansion degrades the positioning accuracy. In this paper, a finite difference method is applied to analyse temperature distributions and thermal expansions of the ball screw system according to preload conditions and rotational speeds. Some simulation results show that the developed methodology is appropriate to study the thermal expansion characteristics of ball screw systems.

  • PDF

Applying a Tracing Method to Compute Swept Volumes Generated by Free-form Objects in Screw Motions (스크류운동을 하는 자유형상 물체의 스웹볼륨 계산을 위한 추적법의 응용)

  • Kim, Hyoung-Q;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.106-114
    • /
    • 2010
  • The swept volume, the region of a moving object, is applied in many fields such as valid paths for motions of tools, visualization in robot paths and interference tests for parts assembling or disjointing. The shape of a swept volume depends on an generators computed with normal vectors of an object and velocity vectors of a motion. Although free-from surfaces are widely used to represent geometric models in CAD, computing the generators for a free-form object is a formidable task. Previous approaches exploit the closed form expressions of generators but limited to planer or quadric faces. In this paper, we propose the algorithm to compute swept volumes generated by free-form objects in screw motions. For the algorithm a tracing method is applied to the computation of generators. It considers curvatures of surfaces of an object to increase the computational accuracy. We implemented our algorithm in the CATIA V.5 environment to test the validity of our algorithm and to generate examples.

Development of a Novel 3-DOF Hybrid Robot with Enlarged Workspace (확장 작업업영역을 갖는 고속 3자유도 하이브리드 로봇 개발)

  • Jeong, Sung Hun;Kim, Giseong;Gwak, Gyeong Min;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.875-880
    • /
    • 2020
  • In this paper, a novel 3-DOF hybrid robot with enlarged workspace is presented for high speed applications. The 3-DOF hybrid robot is made up of one linear actuator and 2-DOF planar parallel robot in series. The actuation consists of one ball-screw to make one linear motion and two rotary ball-screws to transmit rotational motion to 2-DOF parallel robot. The workspace can be enlarged according to ball-screw stroke and the moving inertia can be reduced due to locating all the heavy actuators at the fixed base. The inverse kinematics and workspace analyses are presented. The robot prototype and PC-based control system are developed.

Development of a Human-Sized Biped Walking Robot (인체형 이족보행로봇의 개발)

  • 최형식;박용헌;김영식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.484-491
    • /
    • 2002
  • We developed a new type of human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The robot overcomes the limit of the driving torque of conventional BWRs. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has a space to board DC battery and controllers. In the performance test, the BWR performed sitting-up and down motion, and walking motion. Through the test, we found the possibility of a high performance biped-walking.

Mobility Analysis of Planar Mobile Robots and The Rough-Terrain Mobile Robot via The Representative Screw (대표 스크류를 이용한 평면형 및 험로 주행 로봇의 모빌리티 분석)

  • 김희국;이승은;이병주
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.881-889
    • /
    • 2002
  • Mobility analysis for various mobile mechanisms including mechanisms with lack of geometric generality is performed. Joint screws are employed to find the sire of feasible joint motion space or each of independent loops of mobile mechanisms. Particularly, the concept of "representative screws" is introduced to represent the feasible motion spaces for subsets of joints belonging to either a loop or a sub-system consisting of several closed loops. Firstly. simplified joint model for each of low different typical wheels popularly employed in mobile robots is described. Then. mobility analysis fir various types of planar mobile robots and the Mars Rover mobile robot for navigation on the rocky road on Mars arc performed. It is confirmed that the obtained results in this study coincide with the previous ones which were obtained by suing imaginary Joints approach(1)pproach(1)

Geometrical Velocity and Force Analyses on Planar Serial Mechanisms (평면 직렬 메커니즘의 기하학적 속도 및 힘 해석)

  • Lee, Chan;Lee, Jeh Won;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.648-653
    • /
    • 2015
  • The kinematics with the instantaneous motion and statics of a manipulator has generally been proven algebraically. The algebraic solutions give very simple and straightforward results but the solutions do not have any meaning in physics or geometry. Therefore it is not easy to extend the algebraic results to design or control a robotic manipulator efficiently. Recently, geometrical approach to define the instantaneous motion or static relation of a manipulator is popularly researched and the results have very strong advantages to have a physical insight in the solution. In this paper, the instantaneous motion and static relation of a planar manipulator are described by geometrical approach, specifically by an axis screw and a line screw. The mass center of a triangle with weight and a perpendicular distance between the two screws are useful geometric measures for geometric analysis. This study provides a geometric interpretation of the kinematics and statics of a planar manipulator, and the method can be applied to design or control procedure from the geometric information in the equations.

A Study on Ball Screw Polishing Using Magnetic Assisted Polishing (자기연마법을 이용한 볼나사의 연마가공에 관한 연구)

  • 이용철;이응숙;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.43-47
    • /
    • 1995
  • The ball screw is one of the important mechanical parts for the linear motion feeding systems. The usage of the ball screw has been growing in various industrial fields such as CNC machine tool, industrial robot and automated systems. Because of ever increasing demand for ball screws, increased accuracy and quality of the ball screw is needed,especially the surface roughness of the ball contact area in order to diminish noise and vibration. Therefore to improve the surface roughness of the area,we introduced magnetic assisted polishing which is one of the new potential polishing methods. In this study, diamond slurry and iron powder was used for magnetic assisted polishing of the ball bearing surface. This polishing process was experimentally confirmed to improve the surface roughness of the ball bearing.

  • PDF

Characteristics of floating couplings of ball screw for high precision feeding system (고정밀 이송을 위한 볼스크류용 체결기구의 특성에 관한 연구)

  • 김인찬;박천홍;정윤교;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.610-614
    • /
    • 1996
  • As the run out error and misalignment of ball screw connected directly to guide table largely affect the motion accuracy of guideway, floating coupling that releases the table from screw nut except feed and rotational direction is needed todecrease its influences. The purpose of this study is to propose a practical model floating coupling of ball serew for high precision feeding system. The straightness, dynanic characteristics and micro step response of hydrostatic guideway, mounted with three types of coupling fixed type, leaf spring type and hydrostatic type, are tested and compared. From the resuts of experiments, it is proved that a hydrostatic type floating coupling is superior to other couplings and is available to high precision feeding system with ball screw.

  • PDF

Case Study on the Safety Working Load of a LM-Guide Structure (볼나사일체형 LM가이드 설계에 관한 연구)

  • Yoon, Young-Sik;Shin, Dong-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.820-825
    • /
    • 2007
  • A ballscrew-linear motion(LM) guide is well-described by its name: it is a LM guide that runs by ballscrew. It consists of LM rail, LM block, end plate, screw, nut and bearing balls. The ballscrew-LM guide has many advantages compared with conventional LM guide. The high efficiency achieved with rolling contact devices permits the employment of antibacklash methods. The balls provide the only physical contact between nut rail and block and ball screw and nut replacing the sliding friction with a rolling motion. The life of the ballscrew-LM is determinated by the balls. The objective of this paper is to introduce the design of the ballscrew-LM with the safety working load.

  • PDF

Detection and Quantification of Screw-Home Movement Using Nine-Axis Inertial Sensors

  • Jeon, Jeong Woo;Lee, Dong Yeop;Yu, Jae Ho;Kim, Jin Seop;Hong, Jiheon
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.6
    • /
    • pp.333-338
    • /
    • 2019
  • Purpose: Although previous studies on the screw-home movement (SHM) for autopsy specimen and walking of living persons conducted, the possibility of acquiring SHM based on inertial measurement units received little attention. This study aimed to investigate the possibility of measuring SHM for the non-weighted bearing using a micro-electro-mechanical system-based wearable motion capture system (MEMSS). Methods: MEMSS and camera-based motion analysis systems were used to obtain kinematic data of the knee joint. The knee joint moved from the flexion position to a fully extended position and then back to the start point. The coefficient of multiple correlation and the difference in the range of motion were used to assess the waveform similarity in the movement measured by two measurement systems. Results: The waveform similarity in the sagittal plane was excellent and the in the transverse plane was good. Significant differences were found in the sagittal plane between the two systems (p<0.05). However, there was no significant difference in the transverse plane between the two systems (p>0.05). Conclusion: The SHM during the passive motion without muscle contraction in the non-weighted bearing appeared in the entire range. We thought that the MEMSS could be easily applied to the acquisition of biomechanical data on the knee related to physical therapy.