• 제목/요약/키워드: screen thickness

검색결과 236건 처리시간 0.023초

백색 LED용 복합형광체의 코팅공정에 따른 광 특성 (Optical Properties as Coating Process of Complex Phosphor for White LED)

  • 이효성;김병호;황종희;임태영;김진호;전대우;정현석;이미재
    • 한국재료학회지
    • /
    • 제26권1호
    • /
    • pp.22-28
    • /
    • 2016
  • In this study, we fabricated high quality color conversion component with green/red phosphor and low melting glass frit. The color conversion component was prepared by placing the green and red phosphor layer on slide glass via screen printing process. The properties of color conversion component could be controlled by changing coating sequence, layer thickness and heat treatment temperature. We discovered that optical properties of color conversion component were generally determined by the lowest layer. On the other hand, the heat treatment temperature also affected to correlated color temperature (CCT) and color rending index (CRI). The color conversion component with a green (lower) - red (upper) layer which was sintered at $550^{\circ}C$ showed the best optical properties: CCT, CRI and luminance efficacy were 3340 K, 78, and 56.5 lm/w, respectively.

염료감응형 태양전지의 광전극 적용을 위한 $TiO_2$ nanoparticle 특성 분석 (Study on $TiO_2$ nanoparticle for Photoelectrode in Dye-sensitized Solar Cell)

  • 조슬기;이경주;송상우;박재호;문병무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.57.2-57.2
    • /
    • 2011
  • Dye-sensitized solar cells (DSSC) have recently been developed as a cost-effective photovoltaic system due to their low-cost materials and facile processing. The production of DSSC involves chemical and thermal processes but no vacuum is involved. Therefore, DSSC can be fabricated without using expensive equipment. The use of dyes and nanocrystalline $TiO_2$ is one of the most promising approaches to realize both high performance and low cost. The efficiency of the DSSC changes consequently in the particle size, morphology, crystallization and surface state of the $TiO_2$. Nanocrystalline $TiO_2$ materials have been widely used as a photo catalyst and an electron collector in DSSC. Front electrode in DSSC are required to have an extremely high porosity and surface area such that the dyes can be sufficiently adsorbed and be electronically interconnected, resulting in the efficient generation of photocurrent within cells. In this study, DSSC were fabricated by an screen printing for the $TiO_2$ thin film. $TiO_2$ nanoparticles characterized by X-ray diffractometer (XRD) and scanning electron microscope (SEM) and scanning auger microscopy (SAM) and zeta potential and electrochemical impedance spectroscopy(EIS).In addition, DSSC module was modeled and simulated using the SILVACO TCAD software program. Improve the efficiency of DSSC, the effect of $TiO_2$ thin film thickness and $TiO_2$ nanoparticle size was investigated by SILVACO TCAD software program.

  • PDF

쇠고기 등급판정을 위한 이동형 컴퓨터시각 장치 및 살코기 추출 알고리즘 개발 (Development of Mobile Type Computer Vision System and Lean Tissue Extraction Algorithm for Beef Quality Grading)

  • 최선;;황헌
    • Journal of Biosystems Engineering
    • /
    • 제30권6호통권113호
    • /
    • pp.340-346
    • /
    • 2005
  • Major quality features of the beef carcass in most countries including Korea are size, marbling state of the lean tissue, color of the fat and lean tissue, and thickness of back fat of the 13th rib. To evaluate the beef quality, extracting loin parts from the sectional image of the 13th beef rib is crucial and is the first step. However, because of the inhomogeneous distribution and fuzzy pattern of the fat and lean tissues on the beef cut, it is difficult to extract automatically the proper contour of the lean tissue. In this paper, a prototype mobile beef quality measurement system, which can be implemented practically at the beef processing site was developed. The developed system was composed of the hand held image acquisition unit and mobile processing unit mounted with touch-pad screen. Algorithms to extract the boundary of the lean tissue and a proper tool to evaluate the marbling status have been developed using color image processing. The boundary extraction algorithm showed successful results for the beef cuts with simple and moderate patterns of the lean tissue and fat. However, it had some difficulty in eliminating complex pattern of the extraneous tissues adhered to the lean tissue in the boundary extraction. The developed algorithms were implemented to the prototype mobile processing unit.

Computed Radiography 시스템에 $^{192}Ir$$^{75}Se$ 동위원소를 적용하여 촬영한 비파괴검사 영상 비교 (Comparison of Non-Destructive Testing Images using $^{192}Ir$ and $^{75}Se$ with Computed Radiography System)

  • 강상묵;최창일;이승규;박상기;김용균
    • Journal of Radiation Protection and Research
    • /
    • 제35권1호
    • /
    • pp.26-33
    • /
    • 2010
  • 비파괴검사 분야의 방사선 검사(RT) 방식은 image plate (IP)를 사용한 Computed Radiography(CR) 영상시스템의 도입에 따라 필름 방식의 아날로그 영상이 점차 디지털 영상으로 교체되고 있다. 비파괴검사에서 결함을 효과적으로 검출할 수 있는 영상의 품질은 촬영 조건, 영상획득매체, 사용 선원의 종류 및 촬영 거리, 검사체 두께등이 영향을 미친다. 본 논문에서는 비파괴 검사 분야에 적용할 수 있는 감마선원의 기본 특성을 조사하였고, FUJI사에서 개발한 CR 영상 시스템에 $^{75}Se$, $^{192}Ir$ 동위원소를 적용하여 영상을 획득하였다. 획득된 영상의 gray scale을 이미지 소프트웨어를 통해 추출한 후에 대조도 및 신호대잡음비를 계산하고 비교 분석하였다. 또한 투과도계를 이용한 비교 영상을 통하여 식별도를 분석하였다.

단결정 실리콘 태양전지 도핑 확산 공정에서 주입되는 $O_2$ 가스와 PSG 유무에 따른 특성 변화 (The Study on the Characteristic of Mono Crystalline Silicon Solar Cell with Change of $O_2$ Injection during Drive-in Process and PSG Removal)

  • 최성진;송희은;유권종;이희덕
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.105-110
    • /
    • 2011
  • The doping procedure in crystalline silicon solar cell fabrication usually contains oxygen injection during drive-in process and removal of phosphorous silicate glass(PSG). In this paper, we studied the effect of oxygen injection and PSG on conversion efficiency of solar cell. The mono crystalline silicon wafers with $156{\times}156mm^2$, $200{\mu}m$, $0.5-3.0{\Omega}{\cdot}cm$ and p-type were used. After etching $7{\mu}m$ of the surface to form the pyramidal structure, the P(phosphorous) was injected into silicon wafer using diffusion furnace to make the emitter layer. After then, the silicon nitride was deposited by the PECVD with 80 nm thickness and 2.1 refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in 400-425-450-550-$880^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Solar cells with four different types were fabricated with/without oxygen injection and PSG removal. Solar cell that injected oxygen during the drive-in process and removed PSG after doping process showed the 17.9 % conversion efficiency which is best in this study. This solar cells showed $35.5mA/cm^2$ of the current density, 632 mV of the open circuit voltage and 79.5 % of the fill factor.

  • PDF

Indium 첨가된 SnO2 후막형 가스센서의 특성 (Characteristics of Indium Doped SnO2 Thick Film for Gas Sensors)

  • 유일;이지영
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.408-411
    • /
    • 2010
  • Indium doped $SnO_2$ thick films for gas sensors were fabricated by a screen printing method on alumina substrates. The effects of indium concentration on the structural and morphological properties of the $SnO_2$ were investigated by X-ray diffraction and Scanning Electron Microscope. The structural properties of the $SnO_2$:In by X-ray diffraction showed a (110) dominant $SnO_2$ peak. The size of $SnO_2$ particles ranged from 0.05 to $0.1\;{\mu}m$, and $SnO_2$ particles were found to contain many pores, according to the SEM analysis. The thickness of the indium-doped $SnO_2$ thick films for gas sensors was about $20\;{\mu}m$, as confirmed by cross sectional SEM image. Sensitivity of the $SnO_2$:In gas sensor to 2000 ppm of $CO_2$ gas and 50 ppm of H2S gas was investigated for various indium concentrations. The highest sensitivity to $CO_2$ gas and H2S gas of the indium-doped $SnO_2$ thick films was observed at the 8 wt% and 4 wt% indium concentration, respectively. The good sensing performances of indium-doped $SnO_2$ gas sensors to $CO_2$ gas were attributed to the increase of oxygen vacancies and surface area in the $SnO_2$:In. The $SnO_2$:In gas sensors showed good selectivity to $CO_2$ gas.

절연막을 이용한 단면 표면조직화 결정질 실리콘 태양전지 (The Single-Side Textured Crystalline Silicon Solar Cell Using Dielectric Coating Layer)

  • 도겸선;박석기;명재민;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.245-248
    • /
    • 2011
  • Many researches have been carried out to improve light absorption in the crystalline silicon solar cell fabrication. The rear reflection is applied to increase the path length of light, resulting in the light absorption enhancement and thus the efficiency improvement mainly due to increase in short circuit current. In this paper, we manufactured the silicon solar cell using the mono crystalline silicon wafers with $156{\times}156mm^2$, 0.5~3.0 ${\Omega}{\cdot}cm$ of resistivity and p-type. After saw damage removal, the dielectric film ($SiN_x$)on the back surface was deposited, followed by surface texturing in the KOH solution. It resulted in single-side texturing wafer. Then the dielectric film was removed in the HF solution. The silicon wafers were doped with phosphorus by $POCl_3$ with the sheet resistance 50 ${\Omega}/{\Box}$ and then the silicon nitride was deposited on the front surface by the PECVD with 80nm thickness. The electrodes were formed by screen-printing with Ag and Al paste for front and back surface, respectively. The reflectance and transmittance for the single-sided and double-sided textured wafers were compared. The double-sided textured wafer showed higher reflectance and lower transmittance at the long wavelength region, compared to single-sided. The completed crystalline silicon solar cells with different back surface texture showed the conversion efficiency of 17.4% for the single sided and 17.3% for the double sided. The efficiency improvement with single-sided textured solar cell resulted from reflectance increase on back surface and light absorption enhancement.

  • PDF

결정질 실리콘 태양전지 도핑 확산 공정에서 시간과 온도 변화에 의한 Drive-in 공정 연구 (Optimization of Drive-in Process with Various Times and Temperatures in Crystalline Silicon Solar Cell Fabrication)

  • 이희준;최성진;명재민;송희은;유권종
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.51-55
    • /
    • 2011
  • In this paper, the optimized doping condition of crystalline silicon solar cells with 156 ${\times}$ 156 mm2 area was studied. To optimize the drive-in condition in the doping process, the other conditions except drive-in temperature and time were fixed. After etching 7 ${\mu}m$ of the surface to form the pyramidal structure, the silicon nitride deposited by the PECVD had 75~80 nm thickness and 2 to 2.1 for a refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in $400-425-450-550-850^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Drive-in temperature was changed in range of $828^{\circ}C$ to $860^{\circ}C$ and time was from 3 min to 40 min. The sheet resistance of wafer was fixed to avoid its effect on solar cell. The solar cell fabricated with various conditions showed the similar conversion efficiency of 17.4%. This experimental result showed the drive-in temperatures and times little influence on solar cell characteristics.

  • PDF

단결정 실리콘 태양전지의 도핑 최적화를 위한 확산 온도에 대한 연구 (Optimization of Drive-in Temperature at Doping Process for Mono Crystalline Silicon Solar Cell)

  • 최성진;송희은;유권종;유진수;한규민;권준영;이희덕
    • 한국태양에너지학회 논문집
    • /
    • 제31권1호
    • /
    • pp.37-43
    • /
    • 2011
  • In this paper, the optimized doping condition of crystalline silicon solar cells with $156{\times}156\;mm^2$ area was studied. To optimize the drive-in temperature in the doping process, the other conditions except variable drive-in temperature were fixed. These conditions were obtained in previous studies. After etching$7\;{\mu}m$ of the surface to form the pyramidal structure, the silicon nitride deposited by the PECVD had 75~80nm thickness and 2 to 2.1 for a refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in 400-425-450-550-$850^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Drive-in temperature was changed in range of $830^{\circ}C$ to $890^{\circ}C$to obtain the sheet resistance $30{\sim}70\;{\Omega}/{\box}$ with $10\;\Omega}/{\box}$ intervals. Solar cell made in $890^{\circ}C$ as the drive-in temperature revealed 17.1% conversion efficiency which is best in this study. This solar cells showed $34.4\;mA/cm^2$ of the current density, 627 mV of the open circuit voltage and 79.3% of the fill factor.

얇은 연료극 구조가 용융탄산염 연료전지 성능에 미치는 영향 (Influence of the Thin Anode Geometry on the Performance of Molten Carbonate Fuel Cells)

  • 서동호;박동녘;윤성필;한종희;오인환
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.599-608
    • /
    • 2011
  • The Ni-Al anodes of the molten carbonate fuel cell (MCFC) with three different structures were successfully fabricated in order to reduce the thickness of the anode down to 0.3 mm; one was the non-supported anode made by a conventional tape casting method, and others were the supported anodes made by lamination or direct casting on the nickel screen. It was seen from the physical analyses and cell operation that the supported thin anodes made by direct casting showed good mechanical strength and cell performance because of a good contact between the anode materials and the support. The single cell using the above anode showed the cell voltage of 0.858 V at the current density of 150$mA/cm^2$ with the nitrogen cross-over of only 0.6% at the operation time of 1,000 h, which was similar to the performance of the conventional thick (0.7 mm) anode. The ability to utilize a thin configuration of anode should cut down the amount of nickel alloy and consequently reduce its manufacturing cost.