• Title/Summary/Keyword: scientific hypothesis generating ability

Search Result 8, Processing Time 0.016 seconds

Development of a Descriptive Paper Test Item and a Counting Formula for Evaluating Elementary School Students' Scientific Hypothesis Generating Ability (초등학생의 과학적 가설생성능력 평가를 위한 서술형 지필과제 및 가설생성능력지수 산출식의 개발)

  • Jo, Eun Byul;Shin, Dong Hoon
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.2
    • /
    • pp.137-149
    • /
    • 2016
  • The purpose of this study is to develop a descriptive paper test item which can evaluate elementary school students' HGA (scientific Hypothesis Generating Ability) and to propose a counting formula that can easily assess student's HGA objectively and quantitatively. To make the test item can possibly evaluate all the students from 6th graders to 3rd graders, the 'rabbit's ear' item is developed. Developed test item was distributed to four different elementary schools in Seoul. Total 280 students who were in the 6th grade solved the item. All the students' reponses to the item were analyzed. Based on the analyzed data evaluation factors and evaluation criteria are extracted to design a Hypothesis Generating ability Quotient (HGQ). As the result 'Explican's Degree of Likeness' and 'Hypothesis' Degree of Explanation' are chosen as evaluation factors. Also precedent evaluation criteria were renewed. At first, Explican's Degree of Likeness evaluation criterion was turned four levels into three levels and each content of evaluation criterion is also modified. Secondly, new evaluation factor 'Hypothesis' Degree of Explanation' was developed as combined three different evaluation criteria, 'level of explican', 'number of explican' and 'structure of explican'. This evaluation factor was designed to assess how the suggested hypothesis can elaborately explain the cause of one phenomenon. Newly designed evaluation factors and evaluation criteria can assess HGA more in detail and reduce the scoring discordant through the markers. Lastly, Developed counting formula is much more simple than precedent Kwon's equation for evaluating the Hypothesis Explanation Quotient. So it could help easily distinguish one student's scientific hypothesis generating ability.

EEG Correlation Patterns of Hypothesis-Generating in Undergraduate Students' Generation of Scientific Knowledge

  • Kwon, Yong-Ju;Jeong, Jin-Su;Jin, Seung-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.4
    • /
    • pp.722-730
    • /
    • 2004
  • The purpose of this study was to test the notion that the inter-individual difference in hypothesis-generating is presumably detected by differentiating subjects' EEG correlation patterns of the prefrontal lobes. To test the notion of the inter-individual difference by EEG analysis, eight healthy undergraduate volunteers' EEG signals on the prefrontal lobes were recorded during hypothesis-generating and resting with eyes-closed condition. Their EEG signals were analyzed by time durations and transformed into correlation patterns. The results showed that subjects' EEG correlation patterns during hypothesis-generating were significantly different among individuals. In addition, the EEG correlation patterns were decreased during hypothesis-generating thinking. Furthermore, subject's EEG correlation showed a fluctuationpattern through-out hypothesis-generating, which is presumably caused by the difference of subjects' thinking activities in hypothesis-generating. This study also suggests a possibility that student's scientific thinking ability and the difficulty of scientific knowledge generating may be measured by the analysis of subject's EEG correlation pattern of the prefrontal lobes.

Improvement of Students' Problem Finding and Hypothesis Generating Abilities: Gifted Science Education Program Utilizing Mendel's Law (문제발견 및 가설설정 능력 신장 과학영재교육프로그램 개발: 멘델의 과학적 사고과정 적용)

  • Kim, Soon-Ok;Kim, Bong-Sun;Seo, Hae-Ae;Kim, Young-Min;Park, Jong-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.4
    • /
    • pp.1033-1053
    • /
    • 2011
  • In the process of establishing the principle of genetics, Mendel discovered problems based on various observations. Mendel's scientific thinking ability can be effective if this ability is embedded in gifted science education programs. The study aims to develop a science gifted education program utilizing Mendel's scientific thinking ability shown in the principles of genetics and examine students' changes in scientific thinking ability before and after the program implementation. For the program development, first, the characteristics of Mendel's scientific thinking ability in the process of establishing the principle of genetics were investigated and extracted the major elements of inquiry. Second, the science gifted education programs was developed by applying the inquiry elements from the Mendel's Law. The program was implemented with 19 students of $7^{th}$, $8^{th}$ graders who attend the science gifted education center affiliated with university during July 2011. The Mendel's scientific thinking ability was classified into induction, deduction, and integration. The elements of inquiry extracted from the Mendel's scientific thinking include making observation, puzzling observation, proposing causal questions, generating hypothesis, drawing inference, designing experiment, gathering and analyzing data, drawing conclusions, and making generalization. With applying these elements, the program was developed with four phases: $1^{st}$ - problem finding; $2^{nd}$ - hypothesis generating; $3^{rs}$ - hypothesis testing and $4^{th}$ - problem solving. After implementation, students' changes in scientific thinking ability were measured. The findings from the study are as follows: First, students' abilities of problem finding is significantly (p<.05) increased. Second, students' abilities of hypothesis generating is significantly (pp<.05) increased.

Analysis on Hypothesis-generating Ability of Elementary School Gifted Students in Science and Its Correlation with Meta-cognition (초등과학영재의 가설설정 능력과 메타인지와의 관계 분석)

  • Park, Mijin;Seo, Hae-Ae
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.1
    • /
    • pp.59-76
    • /
    • 2015
  • The study aimed to investigate elementary school gifted students' hypothesis-generating ability and characteristics of hypotheses and to analyze the correlation between hypothesis-generating ability and meta-cognition. Nineteen students enrolled in a science gifted education center affiliated with a university in 2013 were selected as research subjects. An instrument of open ended items about hypothesis generating was developed and administered to students, and their meta-cognition as well as their preferred science teaching method were examined. Hypotheses generated by students were classified into two categories: scientific and non-scientific hypotheses, and then a closer analysis was conducted on characteristics of non-scientific hypotheses. It was found that 47% (18 out of 38 hypotheses) was scientific ones showing that elementary school gifted students in science in this study presented low level of ability in generating hypothesis. It was also found that non-scientific hypotheses frequently showed characteristics of uncertain in causality or impossible to verify relationships. Furthermore, differences in hypothesis-generating ability and characteristics of hypotheses were appeared in conditions whether inquiry questions and variable identification process were given or not. Students showed high abilities in hypothesis generating and variable identifying when inquiry questions and variable identification process were given. Compared to previous research results, students in the study showed high level of meta-cognition and tendency of utilizing monitoring strategy more than planning and regulating. In ill-structured conditions that students themselves find inquiry questions and identify variables, a significant (p<.05) correlation appeared between hypothesis generating ability and meta-cognition and a high level of correlation between planning and regulating strategies. It was also found that differences existed in hypothesis-generating ability and preferred science teaching methods between students with high level and those with low level of meta-cognition; and students with low level of meta cognition showed difficulties in generating hypothesis and identifying variables.

Development of the Quotient Equation of the Hypothesis Evaluating Ability by Analysis of the Pre-service Elementary School Teachers' Knowledges for Evaluating Hypothesis on a Woodpecker Task (딱따구리 과제에서 초등예비 교사들의 가설 평가 지식에 대한 분석을 통한 가설 평가 능력 지수 산출식의 개발)

  • Lee, Jun-Ki;Lee, Il-Sun;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.27 no.1
    • /
    • pp.49-59
    • /
    • 2008
  • The purpose of this study was to invent a quotient equation which could quantitatively evaluate individual's hypothesis evaluating ability. The equation was induced by the analysis of the classification types about hypothesis evaluation knowledges generated by 15 pre-service elementary school teachers and the construction of the quotient equation on hypothesis evaluating ability. The hypothesis evaluation task administered to subjects was dealt with the woodpecker behavior. The task was initiated by generating hypothesis on the following question: 'Why don't woodpecker have brain damage after pecking wood?' Subjects then were asked to design and perform experiments for testing hypothesis. Finally they were asked to evaluate their own hypothesis based on the collected, analyzed and interpreted data. The knowledges generated from their evaluating hypothesis were analyzed by 4 major categories (richness, type, level and accuracy). Then, a general equation which could quantitatively and systematically evaluate individual's hypothesis evaluating ability was invented by an inductive process. After combining all the categories the following quotient equation was proposed; '$VQ\;=\;{\sum}(TE_n\;{\times}\;AE_n)\;{\times}\;LE$'. According to this results, woodpecker task and hypothesis evaluating ability quotient equation (VQ) which invented in this study could be applied to a practical use of measuring students' ability of scientific hypothesis evaluation.

  • PDF

Development of Elementary Students' Ability to Generate Hypothesis Knowledge through Knowledge Generation Learning in Science (과학 지식 생성 학습을 통한 초등학생들의 가설 지식 생성 능력의 발달)

  • Kang, Eun-Mi;Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.3
    • /
    • pp.257-270
    • /
    • 2006
  • The purpose of this study was to develop elementary students' ability to generate hypothesis knowledge through knowledge generation learning in science. The learning program consisted of a series of 28 activities to generate hypotheses in science. Eighty 6th grade students participated in the study and were divided into experimental and control groups. The experimental group was administered a program geared towards hypothesis generation learning and the control group was administered a program aimed at hypothesis expository learning in elementary science. After using the respective programs, subjects in both groups were tested in terms of their abilities in abductive knowledge generation and administered a descriptive self-report regarding their generation of hypotheses. Two of the 28 activity program worksheets in the experimental group were analyzed in terms of the quality and process of students' hypothesis generation. The results were as follows: 1) The experimental group showed significantly higher scores in terms of scientific knowledge generation (i.e. abductive knowledge generation) than the control group. 2) The degree of hypothesis explanation in the experimental group was significantly higher than in the control group in terms of the quality of the generated hypotheses. In addition, students in the experimental group generated more varied and valid knowledge than the control group in terms of sub-knowledge of hypothesis generation. Therefore, it can be argued that this program for hypothesis knowledge generation in elementary science students was effective in the generation of hypothesis knowledge.

  • PDF

Children's Generating Hypotheses on the Pendulum Motion: Roles of Abductive Reasoning and Prior Knowledge (진자운동에서 아동의 가설 생성: 귀추와 선지식의 역할)

  • Joeng, Jin-Su;Park, Yun-Bok;Yang, Il-Ho;Kwon, Yong-Ju
    • Journal of the Korean earth science society
    • /
    • v.24 no.6
    • /
    • pp.524-532
    • /
    • 2003
  • The purpose of the present study was to test the hypothesis that student's abductive reasoning skills play an important role in the generation of hypotheses on pendulum motion tasks. To test the hypothesis, a hypothesis-generating test on the pendulum motion and a prior knowledge test about the length of the pendulum motion were developed and administered to a sample of 5th grade children. A significant number of subjects who have the prior knowledge about the length of the pendulum motion failed to apply that prior knowledge to generate a hypothesis on a swing task. These results showed that students' failure in hypothesis-generating was related to their deficiency in abductive reasoning ability, rather than the simple lack of prior knowledge. Furthermore, children's successful generating hypothesis should be required their abductive reasoning skills as well as prior knowledge. Therefore, this study supports the notion that abductive reasoning ability beyond prior knowledge plays an important role in the process of hypothesis-generation. This study suggests that science education should provide teaching about abdctive reasoning as well as scientific declarative knowledge for developing children's hypothesis-generating skills.

Brain Activations on the Hypothesis-Generating and Hypothesis-Understanding in Pre-Service Teachers not Majoring in Biology, Pre-Service Teachers Majoring in Biology and Biologists (생물전공 및 비전공 예비교사들과 생물학자들의 가설 생성 및 이해에서 나타나는 두뇌 활성 차이)

  • Kwon, Yong-Ju;Lee, Jun-Ki
    • Journal of Science Education
    • /
    • v.33 no.2
    • /
    • pp.173-183
    • /
    • 2009
  • We aimed to examine difference between the brain activation pattern based upon hypothesis-generating and hypothesis-understanding among the pre-service teachers not majoring in biology, the pre-service teachers majoring in biology and the biologists using fMRI. We have designed two sets of task paradigm on the biological phenomena: hypothesis-generating and hypothesis-understanding and thirty six healthy participants (twelve participants per group) performed the tasks. The result was showed that 1) there were significant differences of brain activation patterns in hypothesis-generating on the biological phenomena among three groups, 2) the left middle frontal gyrus in the part of DLPFC region was play an important roles of hypothesis-generating and make a significant differences among three groups. The superior ability of biologists were based upon the activation of middle frontal gyrus which has secondary integration of abstract information, and 3) there were no significant differences of brain activation patterns in hypothesis-understanding on the biological phenomena among three groups. These findings provided that scientist might be skillful in generating a new scientific knowledge.

  • PDF