• Title/Summary/Keyword: science inquiry problem

Search Result 239, Processing Time 0.025 seconds

The Analysis of Student-student Verbal Interactions on the Problem-solving Inquiry Which was Developed for Creativity-increment of the Gifted Middle School Students (중학교 과학 영재의 과학 창의성 신장을 위한 문제 해결형 탐구 실험에서의 학생 간 대화 분석)

  • Kim, Ji-Young;Ha, Ji-Hee;Park, Kuk-Tae;Kang, Seong-Joo
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2008
  • The purpose of this study was to develop problem-solving inquiries for the science gifted and to analyze the effects of problem-solving inquiries. The problem-solving inquiries were composed of scientific knowledge, scientific inquiry skills and creative thinking. The problem-solving inquiries were applied to the science gifted attending the institute of the gifted education. The test of science-creative problem solving (TSCPS) was used to know effects of improvement of science-creativity and the result of TSCPS showed the improvement of science creativity. The analysis of student-student dialogues during experiments showed that the type of dialogue was different on the type of problem-solving inquiry. The dialogue of convergent thinking was frequently showed up on the problem-solving inquiry needed logical thinking whereas that of divergent thinking on the problem-solving inquiry needed idea generation. The problem-solving inquiries had a positive effects on the improvement of the science-creativity.

Inquiry Learning in the high School Biology: Status Survey and Problem Analysis (고등학교 생물과 탐구 학습의 실태 조사와 문제점 분석)

  • Chung, Kun-Sang;Hur, Myung
    • Journal of The Korean Association For Science Education
    • /
    • v.13 no.2
    • /
    • pp.146-151
    • /
    • 1993
  • This study analyzed the problem associated with inquiry centered science education and formulated some improvement Strategies for inquiry learning in the standard Korean high school course. In order to attain the goals of questionaire survey methods were used. To examine the current status of biology education, seperate questionaires were developed through an educational research and development procedure used for tearchers and student. The questionaires were developed to ask about instruction and evaluation methods, the level of inquiry learing and abstacles to it. Here are some of our results: 1) Biology instruction and learning is more knowledge-orinted than inquiry-orinted, 2) Inquiry approach in science teaching is hard to be applied because of crowed classroom conditions. 3) The material is too broad in range and too difficult in content. There is virtually nothing that can be related to everyday life. The material focusing on inquiry activities is unsatisfactorily selected and organized. 4) Effective methods of inquiry-based instruction and evaluation are not available. 5) Biology teachers are burdened with too many class hour a week and too many varieties of additional works. 6) 91.1% of biology teachers and 90.3% of students recognize that lab and field works are needed to enhance inquiry learning. However, in reality, such inquiry activities are lacking. 7) 73.3% of schools have no lab assistants. 8) The university entrance examination is the greatest factor against inquiry learning. 9) There are very few chances of in-service education for biology teachers to learn more about biology curriculum and science education theory.

  • PDF

The Effects of Problem-Solving Inquiry Teaching Using Concept Sketches on Conceptual Changes about Plate Tectonics and Science-Related Attitudes (개념스케치를 활용한 탐구 문제 해결 수업이 판구조론에 대한 개념 변화와 과학 관련 태도에 미치는 영향)

  • Kwon, Young Shin;Kim, Jeong Yul
    • Journal of the Korean earth science society
    • /
    • v.35 no.4
    • /
    • pp.267-276
    • /
    • 2014
  • The purpose of this study is to investigate the effects of problem-solving inquiry teaching using concept sketches on conceptual changes about plate tectonics and science-related attitudes. The subjects of this study were two classes of second-year students of K high school located at Anseong in Gyeonggi Province. Before instruction, a conceptual test was conducted to survey student's preconceptions about plate tectonics. The control group took a traditional lesson, while the experimental group was applied to problem-solving inquiry teaching using concept sketches. After the inquiry instruction, TOSRA (Test of Science-Related Attitudes) was administered to find out changes in science-related attitudes of the two groups. The results of this study are as follows. The experimental group understood concepts of plate tectonics better than the control group, which means that problem-solving inquiry teaching using concept sketches was more effective in students' conceptual understanding. Science-related attitudes of the experimental group showed a significant change in the categories of 'normality of scientists', 'pleasure of science lessons', and 'interests on science as a hobby'. In conclusion, the instruction of problem-solving inquiry using concept sketches produced students' positive changes in conceptual understanding about plate tectonics and science-related attitudes.

The Effect Development and Application of ASI Module using Science Notebooks in Open Inquiry Activity : Focused on Earth and Space (자유 탐구에서 과학 탐구 노트를 활용한 ASI 모듈 개발 및 적용 효과 -지구와 우주 영역을 중심으로-)

  • Lee, Sang-Gyun;Kim, Soon-Shik;Choe, Seong-Bong
    • Journal of Korean Elementary Science Education
    • /
    • v.31 no.1
    • /
    • pp.40-56
    • /
    • 2012
  • The purpose of this study was to understand the teaching effects after conducting ASI module in the open inquiry activities of the elementary science class. in order to understand the effects of ASI(Authentic Scientific Inquiry) module application using science research notes in open inquiry activities to students' science research ability. The results of this study were as follow. First, the after test results were covariance-analyzed to be the effects to science process skills were statistically significant in 0.5 significance level. Second, in the covariance analysis of the after test of the study group and the comparative group, the effects to scientific creative problem solving skills were statistically significant in 0.5 significance level. Third, the covariance analysis of the after test in the effects of ASI module application using science notebooks to students' scientific attitude revealed that the two groups' average difference was statistically significant in 0.5 significance level. In conclusion, application of the ASI module using science notebooks had a positive effect on improvements of students' science process skills, science creative problem solving ability and scientific attitude. Therefore, the ASI module using science notebooks is hopefully to be provided as an effective instructive strategy in the open inquiry activities courses in school in the future.

High Rank 7th Graders' Ideas on the Appropriate Inquiry Problems (중학교 1학년 상위권 학생들의 적절한 탐구 문제에 대한 생각)

  • Kim, Jae-Woo;Oh, Won-Kun
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.2
    • /
    • pp.261-266
    • /
    • 2002
  • To investigate the pupils' ideas about appropriate scientific inquiry problem, we have chosen the 105 boys and girls of 7th grade in a middle school in Seoul, Korea. Their marks in science are within the highest one-third of their classes. The pupils have made their own scientific inquiry questions, which is to be investigated by themselves in summer vacation. The 105 inquiry questions were gathered and evaluated by the pupils with 5-point Likert scale. From these, we have found that the questions inquiring novel phenomena, questioning causality, or containing scientific terms were evaluated as appropriate. Some questions were changed during performance. The pupils have changed their inquiry problems if they feel any difficulties in performing the inquiry.

The Effects of Free Inquiry Method Based on PBL on Science Process Skill and Self-Directed Learning Characteristics (PBL적용 자유탐구 기법이 과학탐구능력과 자기주도적 학습특성에 미치는 효과)

  • Lee, Yong-Seob;Kim, Dae-Sung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.3 no.3
    • /
    • pp.239-247
    • /
    • 2010
  • The purpose of this study is to examine the effects of an free inquiry method based on PBL(Problem-Based Learning: PBL) to improve students science process skills and self-directed learning characteristics. To verify this research, twenty-two third-grade students were selected from Chung-ryeol Elementary School located in Busan. They have received pre-test and post-test about their abilities in their science process skills and abilities for self-directed learning characteristics. Also, their self-reflection data was analyzed. The teaching and learning PBL process is to provide the information named 'I am the expert on Earth and Moon' which is recreated by analyzing the science curriculum and characteristics of students from Lesson 3 'Earth and Moon', and to make plans for solving the information with K/NK method. Then, to solve the information is gathered and investigated using the PBL workbook. Lastly, students present their finding using the free inquiry method in a group. The post-test showed following results : first, the free inquiry method based on PBL stimulates inquisitiveness in students about science learning and the research group shows improved science process skill. It shows us that using the free inquiry method based on PBL can be used effects to elevate science process skill. Second, the free inquiry method based on PBL has a positive effect on self-directed learning. The research tells us that using the free inquiry method based on PBL can improve a student self-directed learning characteristics.

  • PDF

Inquiry Problem Solving Characteristics among Categories with Science Process Skills and Concepts by High School Student's Protocol Analysis (고등학생의 프로토콜 분석을 통한 과학 탐구능력과 개념 중심의 탐구능력 대범주별 과학 문제 해결 특성)

  • Lee, Hang-Ro
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.3
    • /
    • pp.355-366
    • /
    • 1999
  • In this study, the characteristics of science inquiry problem solving were analyzed in the interactions between science process skills and science concepts by each related its category. Nine types of problem solving, which were based on two elements and the thinking aloud were found largely by protocol analysis, but six types when integrated similar thinking processes. There were quite differences in the representative types between students who succeeded and failed when science inquiry items were solved in the abilities of recognizing problems and generating hypotheses or those of drawing conclusions and evaluating. But there were not complete differences in those types between students who succeeded and failed when they were solved in the abilities of designing and performing experiments or those of interpreting and analyzing data. The data were divided into independent variables: $D_1,\;D_2,\;D_3,\;D_4,\;D$ and $C_1,\;C_2,\;C_3,\;C_4,\;C$ and dependant variables; $E_1,\;E_2,\;E_3,\;E_4,\;E$. The former consisted of the content-free science process skill achievement levels by each category of science inquiry skill and the science concept achievement levels, the latter the science inquiry problem achievement levels by each category of science inquiry skill. The regression equations were acquired within the 0.05 significant level by regression analysis: $E_1=0.03+0.16D_1+0.29C_1,\;E_2=-0.203+0.21D_2+0.45C_2,\;E_3=-0.32+0.13D_3+0.47C_3,\;E_4=0.61+0.09D_4+0.29C_4,\;E=-1.41+0.13D+0.47C$(E : the achievement of science problems, D : the achievement of science process skills, C : the achievement of science concepts).

  • PDF

The Effects of Scientific Inquiry Class Using Data Measured with Digital Inquiry Tools on Elementary School Students' Competencies (디지털 탐구도구로 측정한 데이터를 활용하는 과학 탐구 수업이 초등학생의 역량에 미치는 영향)

  • Jeong, Eunju;Son, Jeongwoo
    • Journal of Science Education
    • /
    • v.44 no.2
    • /
    • pp.205-213
    • /
    • 2020
  • The purpose of this study is to investigate the effects of elementary school students' knowledge and information processing competence and collaborative problem-solving ability in scientific inquiry class using data measured with digital inquiry tools. To this end, three classes of 5th grade elementary schools in S-city, Gyeongnam were selected as experimental groups and three classes as control groups. The control group conducted traditional lecture-style classes, and the experimental group conducted scientific inquiry classes using scientific data. The following results were obtained through questionnaires after class. First, science inquiry classes using scientific data helped elementary school students improve their knowledge and information processing competence. Second, scientific inquiry classes using scientific data improved elementary school students' cooperative problem-solving ability. From the above results, it was found that scientific inquiry classes using scientific data are needed to improve the knowledge information processing competence and cooperative problem solving ability of elementary school students. Based on this research, it is necessary to study a specific teaching and learning environment that can activate scientific inquiry class using data measured with digital inquiry tools in the future.

An Analysis of the Scientific Problem Solving Strategies according to Knowledge Levels of the Gifted Students (영재학생들의 지식수준에 따른 과학적 문제해결 전략 분석)

  • Kim, Chunwoong;Chung, Jungin
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.1
    • /
    • pp.73-86
    • /
    • 2019
  • The purpose of this study is to investigate the characteristics of problem solving strategies that gifted students use in science inquiry problem. The subjects of the study are the notes and presentation materials that the 15 team of elementary and junior high school students have solved the problem. They are a team consisting of 27 elementary gifted and 29 middle gifted children who voluntarily selected topics related to dimple among the various inquiry themes. The analysis data are the observations of the subjects' inquiry process, the notes recorded in the inquiry process, and the results of the presentations. In this process, the knowledge related to dimple is classified into the declarative knowledge level and the process knowledge level, and the strategies used by the gifted students are divided into general strategy and supplementary strategy. The results of this study are as follows. First, as a result of categorizing gifted students into knowledge level, six types of AA, AB, BA, BB, BC, and CB were found among the 9 types of knowledge level. Therefore, gifted students did not have a high declarative knowledge level (AC type) or very low level of procedural knowledge level (CA type). Second, the general strategy that gifted students used to solve the dimple problem was using deductive reasoning, inductive reasoning, finding the rule, solving the problem in reverse, building similar problems, and guessing & reviewing strategies. The supplementary strategies used to solve the dimple problem was finding clues, recording important information, using tables and graphs, making tools, using pictures, and thinking experiment strategies. Third, the higher the knowledge level of gifted students, the more common type of strategies they use. In the case of supplementary strategy, it was not related to each type according to knowledge level. Knowledge-based learning related to problem situations can be helpful in understanding, interpreting, and representing problems. In a new problem situation, more problem solving strategies can be used to solve problems in various ways.

The High School Students' Problem Solving Patterns and Their Features in Scientific Inquiry (고등학생의 탐구 사고력 문제 해결 과정에 나타난 유형과 특징)

  • Kim, Ik-Gyun;Hwang, Yu-Jeong
    • Journal of The Korean Association For Science Education
    • /
    • v.13 no.2
    • /
    • pp.152-162
    • /
    • 1993
  • The high school students' problem solving patterns and their features in scientific inquiry, especially on controlling variables and stating hypothesis have been investigated. The 8 problems on controlling variables and stating hypothesis were selected out of the scientific inquiry area in the experimental tryout of Aptitude Assessment for College Education, and had been used to find the patterns and their features. The results of findings are as follows: There were seven patterns in the process of solving problems. Five of seven patterns were found in right answers and four patterns in wrong answers. Two patterns were found in both right and wrong answers. Some students could solve the problems even though they did not understand the elements of the scientific inquiry, controlling variables and stating hypothesis. The false application of physics concepts, misunderstanding about the elements of the scientific inquiry and using unrelated experience and conjectures were the features of students' wrong answers. On the other hand, the right application of physics concepts, understanding and applying the elements right, infering answers from the tables and figures on statements of suggested problems were the features of right answers. The further studies on this kind may helpful to find the higher mental abilities related to scientific inquiry and to develop tools for testing students' scientific inquiry thinking skills.

  • PDF