• Title/Summary/Keyword: schmidt hammer test

Search Result 73, Processing Time 0.03 seconds

Strength Evaluation of the Plant Facility for Fluid Machinery Using Schmidt Hammer in Cold Regions (극한지에서의 유체기계를 위한 플랜트 설비구조물의 비파괴 건전도 평가)

  • Hong, Seung-Seo;Kim, YoungSeok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.25-28
    • /
    • 2016
  • The Schmidt hammer test is one of the best nondestructive tests to measure the strength without breaking structures, which has been used to measure the strength of concrete structures in a simple way at construction sites. However, the future research is needed to apply Schmidt hammer in cold regions. This study is intended to investigate the correlation between unconfined compression test result of the oil storage facilities foundation taken at the King Sejong Antarctic Station and Schmidt hammer test result at the sample-taking site. Also, the equation for uniaxial compression strength using Schmidt hammer rebound value is proposed.

Strength Prediction Equations of High Strength Concrete by Schmidt Hammer Test (슈미트 해머 시험법에 의한 고강도 콘크리트의 강도 추정식)

  • Park Song Chul;Yoo Jae Eun;Kim Min Su;Kwon Young Wung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.615-618
    • /
    • 2005
  • This study concerns the equation of high strength concrete by schmidt hammer test. There are not only few prediction strength equations of concrete by schmidt hammer test, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. For this study, there performed a series of schmidt hammer test with in existing 1,095days' concrete structures and proposed equations as follows ; Linear: ${\Large f}_{ck}=-45.35+2.44R(r^2=72.7\%)$ Quadratic: ${\Large f}_{ck}=-502.08+24.0R-0.25R^2(r^2=82.4\%)$ here, $f_{ck}$ : Estimated compressive strength of concrete by MPa, R : Rebound index of concrete

  • PDF

A New Strength Equation of Concrete by Schmidt Hammer Test (슈미트햄머 시험법에 의한 콘크리트 강도 추정식)

  • Park Song-chul;Yoo Jae-Eun;Kim Min-Su;Kwon Young-Wung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.133-136
    • /
    • 2004
  • This study concerns the. new equation of concrete strength by schmidt hammer test. There are not only few estimate strength equations of concrete by schmidt hammer test, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. For this study, there performed a series of schmidt hammer test with in existing 730days' concrete structures and proposed equations as follows; $$Linear\;:\;f_{ck}=2.18R-40.54\;(r^2=77.7\%)$$ $$Quadratic\;:\;f_{ck}=0.076R^2-2.92R+40.04\;(R^2= 85.5\%)$$ here, fck : Estimated compressive strength of concrete by MPa, R : Rebound index of concrete.

  • PDF

A Prediction of Engineering Properties of Ulsan Sedimentary Rocks with Schmidt Hammer Rebound Number (Schmidt hammer 반발지수로 울산지역 퇴적암의 공학적 특성을 추정하기 위한 연구)

  • Min, Tuk-Ki;Moon, Jong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.139-150
    • /
    • 2006
  • A study has been made of the Schmidt hammer rebound test for the estimation of engineering and physical characteristics of sedimentary rocks. As there is no universal formular for the estimation of rock strength due to geological conditions, in this study only sedimentary rocks are adopted to testing. The aim of study is to make the information more meaningful and useful for engineers and contractors by providing rapid, cheap and easy method. The obtained parameters were correlated and regression equations were established among Schmidt hammer rebound number, uniaxial compressive strength, tangent Young's modulus, indirect tensile stress, water absorption and porosity of rocks with high coefficients of correlation with each other.

The Weathering Index and Prediction of Uniaxial Compressive Strength for Chung-Ju Granite (충주 지역 화강암의 풍화지수 및 일축압축강도 추정에 관한 연구)

  • Eom, Tae-Uk;Kim, Hak-Mun;Kim, Chan-Kuk;Jang, Kyung-Jun;Pyo, Myung-Ryul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.863-874
    • /
    • 2008
  • We have to judge engineering properties of rock accurately in order to design and construct rock structure safely and economically. Among the rock tests, the test result of UCS(Uniaxial Compressive Strength) is very important factor used in the variety ways for designing and construction of underground structures, rock slope and foundation analysis. But the UCS test has some disadvantages of intact sample preparation such as because the shape of sample has to be regular cylindrical, cube or rectangular. In order to solve those problem, indirect tests are used such as point load test, schmidt hammer test, absorption test, dry density to predict UCS of rock. Those tests are easy to prepare sample and convenient to carry out the tests, so it is simple and costs less. Schmidt hammer test are frequently used in the construction site, because it is handy and easy to use, but there is concern of misuse without classifying the specification of each schmidt hammer. Thus, this study suggested presumptive numerical formula related on each specification of schmidt hammer test, point load test, absorption test and dry density also. We compared presumptive numerical formula and R-square through schmidt rebound assessment method already brought up. Also, through the test we offer the extent of weathering index according to the weathering grade.

  • PDF

Evaluating the pull-out load capacity of steel bolt using Schmidt hammer and ultrasonic pulse velocity test

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • Steel bolts are used in the construction industry for a large variety of applications that range from fixing permanent installations to temporary fixtures. In the past much research has been focused on developing destructive testing techniques to estimate their pull-out load carrying capacity with very little attention to develop non-destructive techniques. In this regards the presented research work details the combined use of ultrasonic pulse velocity and Schmidt hammer tests to identify anchor bolts with faculty installation and to estimate their pull-out strength by relating it to the Schmidt hammer rebound value. From experimentation, it was observed that the load capacity of bolt depends on its embedment length, diameter, bond quality/concrete strength and alignment. Ultrasonic pulse velocity test is used to judge the quality of bond of embedded anchor bolt by relating the increase in ultrasonic pulse transit time to the presence of internal pours and cracks in the vicinity of steel bolt and the surrounding concrete. This information combined with the Schmidt hammer rebound number, R, can be used to accurately identify defective bolts which resulted in lower pull-out strength. 12 mm diameter bolts with embedment length of 70 mm and 50 mm were investigated using constant strength concrete. Pull-out load capacity versus the Schmidt hammer rebound number for each embedment length is presented.

Influence of Aggregate on the Rebound Value of P Type Schmidt Hammer (P형 슈미트햄머의 반발도에 미치는 골재종류의 영향)

  • 김태현;김기정;이용성;이백수;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.239-242
    • /
    • 2002
  • This study is intended to investigate the relationship between rebound value of P type schmidt hammer and the compressive strength with various aggregates, and a series of experiments about early strength quality control by P type schmidt hammer was performed. According to the results, the compressive strength of concrete using basalt and limestone aggregate is higher by 3% and lower by 4% than that of concrete using granite aggregate respectively. Concrete using basalt and lime stone aggregate show high rebound value in vertical strike. Estimation of the compressive strength does not show differences in horizontal strike, but the compressive strength is estimated high in order of granite, basalt and limestone aggregate in vertical strike. A good correlation between the rebound value of schmidt hammer and the compressive strength is confirmed regardless of aggregate types, so it could be possible to control the quality of concrete by P type schmidt hammer test when basalt and limestone aggregates are used at the same time.

  • PDF

Suggestions of a New Method for Schmidt Hammer Blowing and Data Analysis on Rocks (II) (암석을 대상으로 시행하는 Schmidt Hammer 타격법의 새로운 제안 (II))

  • Min, Tuk-Ki;Moon, Jong-Kyu;Lee, Sang-Il
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.421-431
    • /
    • 2009
  • As an indirect method, Schmidt hammer test has been employed to investigate correlation between uniaxial compressive strengths and blow values. To conduct the experiment, researchers have examined 11 types (1,417 blocks) of rock, which include igneous, metamorphic and sedimentary rocks in Korea. Every kind of rocks shows different blow behaviors in which correlations of rocks have been analyzed, thus leading to results in new formulas for strength predictions. Cross-check for reliability demonstrates high confidence. Newly proposed test method is highly valued for future research on Korean rocks.

Determination of concrete quality with destructive and non-destructive methods

  • Kibar, Hakan;Ozturk, Turgut
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.473-484
    • /
    • 2015
  • In this study, the availability of Schmidt hammer has been investigated as a reliable method to determine the quality of concrete in irrigation networks. For this purpose, the 28-day compressive strength of concrete material used in the construction irrigation channel of Bafra lowland, which is one of the most fertile plains in Turkey was examined by means of concrete compression and as well as concrete Schmidt hammer in laboratory conditions. This study was carried out on cylindrical samples to represent the everyday concrete party ($150m^3$) produced by contractor firm as 3 replications. The statistical analysis of experimental data showed that the correlations between the values of 28-day compressive strength of Schmidt hammer and the rebound number was found to be 0.98. Differences of the compressive strength between compression testing and Schmidt hammer were statistically significant at P<0.01. In this context, it was found that the reliability of compressive strength of the concrete compression test are excellent, also the reliability of compressive strength of Schmidt hammer are fair in assessing the quality of concrete irrigation channels.

Suggestions for a New Method of Schmidt Hammer Blowing and Data Analysis on Rocks (I) (암석을 대상으로 시행하는 Schmidt Hammer 타격법의 새로운 제안 (I))

  • Min, Tuk-Ki;Moon, Jong-Kyu;Lee, Sang-Il
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.328-338
    • /
    • 2009
  • Schmidt hammer test as an indirect method has so far been widely applied for determining the physical properties of intact rock, and many researchers have developed procedures for its use on rock cores, blocks and in field. Though many methods have developed upto date for indirect using, the almost were single blow which has many errors. The purpose of this study was to evaluate the established as for ASTM, ISRM, BSI, Poole & Farmer and Hucka method and to suggest a new optimum test method and statistical analysis on rocks. The finding has indicated that succeeding blow has served as an optimal to predict physical properties of rocks. To conduct the experiment, researchers have examined 150 rock blocks, which include igneous, metamorphic and sedimentary rocks in Korea nation wide.