• Title/Summary/Keyword: scheduling management

Search Result 1,282, Processing Time 0.138 seconds

A Study on the Reliability Improvement of the Integrated System and Sensitivity Analysis for Line Capacity (선로용량 산정과 민감도 분석의 신뢰성 향상에 관한 연구)

  • Kim Moo-Ryong;Kim Han-Xin;Lee Chang-Ho;Kim Bong-Sun;Kim Dong-Hee;Hong Soon-Hum
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.4
    • /
    • pp.207-217
    • /
    • 2005
  • Line capacity calculation has been used to determine optimum efficiency and safe train service for train scheduling plan and investment priority order throughout detecting bottleneck section. Because of some problems of Yamagisi and UIC methods for line capacity calculation, developing of the method of line capacity caculation and evaluation for the Korea circumstance is important. This paper deals with the reliability improvement on the integrated system of TPS(Train Performance Simulator), PES(Parameter Evaluation Simulator), LCS(Line Capacity Simulator) and simulation and sensitivity analysis for line capacity.

Derivation of Factors for Improvement for Efficient Procurement and Lifting Management of Modular Construction (모듈러 건축공사의 조달 및 양중 효율화를 위한 중점개선 요구사항 도출)

  • Kim, Min Ju;Lee, Dongmin;Lim, Hyunsu;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.211-212
    • /
    • 2015
  • Procurement and lifting scheduling of modules and resources in modular construction, where modules that are manufactured from factory are delivered and assembled on site, is a crucial factor that determines the efficiency of the whole construction. However, previous studies have barely acknowledged the significance of resource procurement process and lifting of modules in modular construction. Therefore, this research aims to derive factors that are in need of improvement for successful implementation of procurement and lifting efficiency, and visualize them according to their importance and performance on improvement through IPA(Important Performance Analysis).

  • PDF

The study on the Derivation of major delay factors in Outrigger Framework of Tall Building (초고층 아웃리거층 골조공사의 주요 공기지연 요인 도출)

  • Kim, Wan-Soub;Lee, Dongyoon;Lee, Myungdo;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.190-191
    • /
    • 2015
  • Construction delays occur frequently in outrigger framework of tall buildings due to the unexpected conditions and lack of experience. However, delay factors of the outrigger framework has not been managed efficiently. Therefore, the systematic management is needed by perceiving possible delay factors before constructing management system. In this study, the major delay factors of outrigger framework are conducted to derive by using the Importance Performance Analysis(IPA). It is expected that the results of this study are utilized for planning of systematic scheduling in outrigger framework of tall building.

  • PDF

on the Integration Strategy of TOC and Six Sigma (TOC와 6시그마의 통합 전략)

  • Bae Young Ju
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.3
    • /
    • pp.121-135
    • /
    • 2005
  • The TOC and Six Sigma are the most attention-getting concepts for managing manufacturing companies. Using the ideas and methods of the TOC, companies can achieve a large reduction of work-in-process and finished good inventories, significant improvement in scheduling performance, and substantial earnings increase. The six sigma approach derives the overall process of selecting the right project based on their potential to improve performance metrics and selecting and training the right people to get the business results. These two concepts have different backgrounds and different viewpoints for production systems. so, if the two concepts integrate each other, the synergy effects to innovate production systems can be expected. The purpose of this paper suggest that integration strategy between Six Sigma and TOC for profit maximization.

Multilevel Security Management for Global Transactions

  • Jeong, Hyun-Cheol
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.735-738
    • /
    • 2000
  • The most important issue in database security is correct concurrency control under the restrictive security policy. The goal of secure transaction management is to keep security and provide many concurrent users with the high availability of database. In this paper, we consider the security environment of multidatabase system with replicated data. The read-from relationship in the existed serializability is improper in security environment. So, we define new read-from relationship and propose new secure 1-copy quasi-seriailzability by utilizing this relationship and display some examples. This security environment requires both the existed local autonomy and the security autonomy as newly defined restriction. To solve covert channel problem is the most difficult issue in developing secure scheduling scheme. The proposed secure 1-copy quasi-serializability is very proper for global transactions in that this serializability not violates security autonomy and prevents covert channel between global transactions.

  • PDF

Smart Power Management Using RTOS-based Uninterruptable Generator Supply

  • Lee, Chulju;Kang, Kyungtae;Noh, Dong Kun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2016
  • An uninterruptible power supply (UPS) allows small companies and domestic users to cope with power outages; but existing designs lack flexibility of control and require expensive battery maintenance, with a cost proportional to the outage compensation time. We combine a compact synchronous generator with a battery, with 10% of the capacity that would otherwise be required, to obtain a UPS with reduced maintenance costs for the same performance. Any UPS must respond immediately to a power loss, and our uninterruptible generator supply (UGS) is therefore built around real-time scheduling of its internal operations; this also makes it suitable for integration into the industrial gateway. The UGS is based on a real-time operating system, with an integrated wireless module providing connectivity to a web server, for monitoring and management, which can be performed remotely on a mobile device.

Time-Profit Trade-Off of Construction Projects Under Extreme Weather Conditions

  • Senouci, Ahmed;Mubarak, Saleh
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.4
    • /
    • pp.33-40
    • /
    • 2014
  • Maximizing the profitability and minimizing the duration of construction projects in extreme weather regions is a challenging objective that is essential for project success. An optimization model is presented herein for the time-profit trade-off analysis of construction projects under extreme weather conditions. The model generates optimal/near optimal schedules that maximize profit and minimize the duration of construction projects in extreme weather regions. The computations in the model are organized into: (1) a scheduling module that develops practical schedules for construction projects, (2) a profit module that computes project costs (direct, indirect, and total) and project profit, and (3) a multi-objective module that determines optimal/near optimal trade-offs between project duration and profit. One example is used to show the impact of extreme weather on construction time and profit. Another example is used to show the model's ability to generate optimal trade-offs between the time and profit of construction projects under extreme weather conditions.

Heuristic Approach for the Capacitated Multiple Traveling Purchaser Problem (용량제약이 있는 복수 순회구매자 문제의 휴리스틱 해법)

  • Choi, Myung-Jin;Lee, Sang-Heon
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • The traveling purchaser problem (TPP) is a generalization of the well-known traveling salesman problem (TSP), which has many real-world applications such as purchasing the required raw materials for the manufacturing factories and the scheduling of a set of jobs over some machines, and many others. In the last decade, TPP has received some attention of the researchers in the operational research area. However, all of the past researches for TPP are restricted on a single purchaser (vehicle). It could be the limitation to solve the real world problem. The purpose of this paper is to suggest the capacitated multiple TPP (CMTPP). It could be used in inbound logistics optimization in supply chain management area and many others. Since TPP is known as NP-hard, we also developed the heuristic algorithm to solve the CMTPP.

Study on Dispatching for Quality and Productivity with estimated completion time (품질과 생산성을 위한 작업완료시간 예측을 통한 작업투입방법)

  • Ko, Hyo-Heon;Baek, Jong-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.1095-1100
    • /
    • 2010
  • Customer satisfaction is a main issue in the modern competitive industrial environment. So quality and productivity are the most important requisites. This paper presents a method for effective real time dispatching for parallel machines with multi product that minimizes mean tardiness and maximizes the quality of the product. In this paper, the effectiveness of the method has been examined in the simulation and compared with other dispatching methods. Using this method presented in this paper, companies can improve customer satisfaction.

An Efficient DVS Algorithm for Pinwheel Task Schedules

  • Chen, Da-Ren;Chen, You-Shyang
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.613-626
    • /
    • 2011
  • In this paper, we focus on the pinwheel task model with a variable voltage processor with d discrete voltage/speed levels. We propose an intra-task DVS algorithm, which constructs a minimum energy schedule for k tasks in O(d+k log k) time We also give an inter-task DVS algorithm with O(d+n log n) time, where n denotes the number of jobs. Previous approaches solve this problem by generating a canonical schedule beforehand and adjusting the tasks' speed in O(dn log n) or O($n^3$) time. However, the length of a canonical schedule depends on the hyper period of those task periods and is of exponential length in general. In our approach, the tasks with arbitrary periods are first transformed into harmonic periods and then profile their key features. Afterward, an optimal discrete voltage schedule can be computed directly from those features.