• Title/Summary/Keyword: scheduling feasibility

Search Result 65, Processing Time 0.026 seconds

Global Internet Computing Environment based on Java (자바를 기반으로 한 글로벌 인터넷 컴퓨팅 환경)

  • Kim, Hui-Cheol;Sin, Pil-Seop;Park, Yeong-Jin;Lee, Yong-Du
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2320-2331
    • /
    • 1999
  • Over the Internet, in order to utilize a collection of idle computers as a parallel computing platform, we propose a new scheme called GICE(Global Internet Computing Environment). GICE is motivated to obtain high programmability, efficient support for heterogeneous computing resources, system scalability, and finally high performance. The programming model of GICE is based on a single address space. GICE is featured with a Java based programming environment, a dynamic resource management scheme, and efficient parallel task scheduling and execution mechanisms. Based on a prototype implementation of GICE, we address the concept, feasibility, complexity and performance of Internet computing.

  • PDF

Ontology for estimating excavation duration for smart construction of hard rock tunnel projects under resource constraint

  • Yang, Shuhan;Ren, Zhihao;Kim, Jung In
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.222-229
    • /
    • 2022
  • Although stochastic programming and feedback control approaches could efficiently mitigate the overdue risks caused by inherent uncertainties in ground conditions, the lack of formal representations of planners' rationales for resource allocation still prevents planners from applying these approaches due to the inability to consider comprehensive resource allocation policies for hard rock tunnel projects. To overcome the limitations, the authors developed an ontology that represents the project duration estimation rationales, considering the impacts of ground conditions, excavation methods, project states, resources (i.e., given equipment fleet), and resource allocation policies (RAPs). This ontology consists of 5 main classes with 22 subclasses. It enables planners to explicitly and comprehensively represent the necessary information to rapidly and consistently estimate the excavation durations during construction. 10 rule sets (i.e., policies) are considered and categorized into two types: non-progress-related and progress-related policies. In order to provide simplified information about the remaining durations of phases for progress-related policies, the ontology also represents encoding principles. The estimation of excavation schedules is carried out based on a hypothetical example considering two types of policies. The estimation results reveal the feasibility, potential for flexibility, and comprehensiveness of the developed ontology. Further research to improve the duration estimation methodology is warranted.

  • PDF

Applications of Agent-Based Modeling (ABM) in Planning and Design of Built Environments

  • Ali Khodabandelu;JeeWoong Park;Unmesa Ray
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.606-612
    • /
    • 2024
  • The modeling and simulation of built environments are crucial preliminary steps for their design, planning, and management. Among various simulation methods, agent-based modeling (ABM) has recently gained traction for simulating built environments due to its ability to effectively model and capture complex interactions between simulated entities. The increasing applications of ABM for the simulation of built environments necessitate a comprehensive review of past scientific endeavors with positive accomplishments and those that remain unsolved. This study seeks to address this gap by reviewing ABM and its applications in the simulation of built environments, with a specific focus on the planning and design phases. First, the research introduces ABM and its unique features concerning the simulation of built environments. Second, it conducts a systematic review of past studies in the planning (e.g., feasibility analysis, risk management, and scheduling under constraints) and design (e.g., automated design, collaborative design, improving operations, and facilitating evacuation) aspects of built environments. Finally, following the in-depth review and subsequent analysis, the study identifies the strengths and weaknesses of using ABM for simulating the built environments. The study concludes with a remark on potential future research directions to overcome the limitations of the existing studies.

Design of an Efficient Concurrency Control Algorithms for Real-time Database Systems (실시간 데이터베이스 시스템을 위한 효율적인 병행실행제어 알고리즘 설계)

  • Lee Seok-Jae;Park Sae-Mi;Kang Tae-ho;Yoo Jae-Soo
    • Journal of Internet Computing and Services
    • /
    • v.5 no.1
    • /
    • pp.67-84
    • /
    • 2004
  • Real-time database systems (RTDBS) are database systems whose transactions are associated with timing constraints such as deadlines. Therefore transaction needs to be completed by a certain deadline. Besides meeting timing constraints, a RTDBS needs to observe data consistency constraints as well. That is to say, unlike a conventional database system, whose main objective is to provide fast average response time, RTDBS may be evaluated based on how often transactions miss their deadline, the average lateness or tardiness of late transactions, the cost incurred in transactions missing their deadlines. Therefore, in RTDBS, transactions should be scheduled according to their criticalness and tightness of their deadlines, even If this means sacrificing fairness and system throughput, And It always must guarantee preceding process of the transaction with the higher priority. In this paper, we propose an efficient real-time scheduling algorithm (Multi-level EFDF) that alleviates problems of the existing real-time scheduling algorithms, a real-time concurrency control algorithm(2PL-FT) for firm and soft real-time transactions. And we compare the proposed 2PL F[ with AVCC in terms of the restarting ratio and the deadline missing ratio of transactions. We show through experiments that our algorithms achieve good performance over the other existing methods proposed earlier.

  • PDF

Design and Implementation of XML based Global Peer-to-Peer Engine (XML기반 전역 Peer-to-Peer 엔진 설계 및 구현)

  • Kwon Tae-suk;Lee Il-su;Lee Sung-young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1B
    • /
    • pp.73-85
    • /
    • 2004
  • SIn this paper, we introduce our experience for designing and implementing new concept of a global XML-based Peer-to-Peer (P2P) engine to support various P2P applications, and interconnection among PC, Web and mobile computing environments. The proposed P2P engine can support to heterogeneous data exchanges and web interconnection by facilitating with the text-base XML while message exchange are necessary. It is also to provide multi-level security functions as well as to apply different types of security algorithms. The system consist of four modules; a message dispatcher to scheduling and filtering the message, a SecureNet to providing security services and data transmission, a Discovery Manager to constructing peer-to-peer networking, and a Repository Manager to processing data management including XML documents. As a feasibility test, we implement various P2P services such as chatting as a communication service, white-board as an authoring tool set during collaborative working, and a file system as a file sharing service. We also compared the proposed system to a Gnutella in order to measure performance of the systems.

Difference in canopy and air temperature as an indicator of crop water stress and its feasibility for irrigation scheduling (작물 캐노피 온도와 대기온도간의 상관관계 분석 및 활용 연구)

  • Kim, Minyoung;Choi, Yonghun;Jeon, Jonggil;Kim, Youngjin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.131-131
    • /
    • 2017
  • 작물의 체온인 엽온은 작물의 증발산량 또는 작물의 스트레스와 관련이 있으며, 일반적으로 일사, 풍속, 습도 등 기상조건과 잎의 크기, 형태 등 생리작용 등에 의해 지배된다. 엽온을 작물의 수분스트레스지수, 증발산량 등을 산정하기 위한 인자로 많이 활용되고 있으며, 최근 ICT 기술의 발달로 인해 열영상 카메라, 적외선 센서 등을 활용해서 실시간 측정을 하고, 정보를 작물 생육환경 제어에 활용하는 연구들이 많이 이루어지고 있다. 본 연구에서는 시설오이를 대상으로 캐노피 온도(Canopy temperature, $T_c$)와 대기온도(Air temperature, $T_a$)간의 상관관계, 또 ($T_c-T_a$)와 포화수증기압차(Vapor pressure deficit, VPD)와의 관계를 분석하였다. 대기온도와 상대습도를 이용하여 산정된 VPD가 엽온에 미치는 영향을 분석한 결과, 엽온 증가에 따라 VPD가 증가하였으며, 캐노피와 대기온도간의 차이 또한 VPD간에 음의 상관관계($R^2=0.82{\sim}0.89$)가 나타났는데, 이는 대기온도에 따른 엽온과 포화수증기압의 상승이 원인인 것으로 나타났다. ($T_c-T_a$)와 VPD값을 이용하면 작물 수분스트레스(Crop Water Stress Index, CWSI)를 산정할 수 있는 데, 결과값을 분석한 결과 $T_c$$T_a$의 차가 적은 경우 CWSI값이 증가함을 알 수 있었다. 향후 연구에서는 추가적으로 다양한 재배환경에서의 캐노피 온도, 포화수증기압차, 그리고 CWSI를 산정하여, 적정 생육 환경조성을 위한 지표로 활용할 계획이다.

  • PDF

Additional Freight Train Schedule Generation Model (화물열차 증편일정 결정모형)

  • Kim, Young-Hoon;Rim, Suk-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3851-3857
    • /
    • 2014
  • Shippers' requests of freight trains vary with time, but generating an additional schedule of freight trains is not easy due to many considerations, such as the line capacity, operation rules, and conflicts with existing trains. On the other hand, an additional freight train schedule has been continuously requested and manually processed by domestic train operation companies using empirical method, which is time consuming. This paper proposes a model to determine the additional freight train schedule that assesses the feasibility of the added freight trains, and generates as many additional schedules as possible, while minimizing the delay of the existing schedules. The problem is presented using time-space network, modeled as multi-commodity flow problem, and solved using the column generation method. Three levels of experiment were conducted to show validity of the proposed model in the computation time.

Improvement of Construction Management for Building Remodeling Projects (건축물 리모델링 프로젝트 사례적용에 의한 시공관리 개선방안)

  • Yeo Un-Yong;Yoon You-Sang;Suh Sang-Wook;Lim Byung-Wook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.4 s.20
    • /
    • pp.122-129
    • /
    • 2004
  • The purpose of this study is to propose a way that improves the construction management for remodeling of building. The study attempts to deal with the case study for application and suggests some positive and negative lessons. The main contents and results of the study are as follows. (1) Through the repetitive joint meetings among the various participants, decision making for the remodeling process can be speeded up. (2) Clear work order and communication for work scope can be accomplished by using perspective drawing in design phase. (3) Reliable construction planning and scheduling for remodeling of building can be proposed through case study. (4) By a sound survey, conflict elements can be resolved in advance. Also reasonable procurement plan of equipments and multi-skilled labor can be important factors to keep a construction schedule in time. (5) Through the comparison a case project with other sites having a similar work scope, improvement effect in a time and cost aspect was analyzed quantitatively. The study also recommends that, as a future research, the remodeling process model be developed for more general applications in remodeling of building.

A Case Study on Productivity Improvement by a Discrete Event-Driven Simulation System (이산사건 시뮬레이션 시스템을 활용한 생산성 개선 사례 연구)

  • Kim, Sangtae;Shin, Moonsoo;Ryu, Kwangyeol;Cho, Yongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.149-158
    • /
    • 2015
  • Up-to-date manufacturing companies have faced a market-driven environment of pull production order. There should be a difference in operating manufacturing resources according to the type, quantity, and delivery time of manufactured products, because the process situation in pull production is changed by customer orders. And it should be taken into account from the stage of preparing for production such as process design and the placement and utilization of manufacturing resources. However, the feasibility of production plans is limited because most of small manufacturing businesses make production/supply plan of the parts and products assuming that equipment abilities in scheduling is sufficient without managing process standard information systemically. In this study, a discrete event simulation system based on BOM (bill of material), that is F-OPIS (online productivity innovation system), is introduced and a case study on application of the system leading to improving productivities is presented. F-OPIS deals with a decision-problem on production management and it is specialized for small-and- medium sized manufacturing companies. The target company of this case study is a typical small-and-medium sized manufacturing company in Korea, that produces various machined parts. The target company adopts make-to-stock production management to prevent tardy delivery because of fluctuations in demand. Therefore, it is required to apply an efficient inventory control solution for improving productivities. In this paper, based on the constraints of working capacity of manufacturing resources, the bottleneck process is analyzed as production conditions are changed. Consequently, an improvement plan is proposed, that eventually enhances overall utilization rates of resources in the bottleneck process and reduces overall production lead-time and inventory level.

CONDITION MONITORING USING EMPIRICAL MODELS: TECHNICAL REVIEW AND PROSPECTS FOR NUCLEAR APPLICATIONS

  • Heo, Gyun-Young
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.49-68
    • /
    • 2008
  • The purpose of this paper is to extensively review the condition monitoring (CM) techniques using empirical models in an effort to reduce or eliminate unexpected downtimes in general industry, and to illustrate the feasibility of applying them to the nuclear industry. CM provides on-time warnings of system states to enable the optimal scheduling of maintenance and, ultimately, plant uptime is maximized. Currently, most maintenance processes tend to be either reactive, or part of scheduled, or preventive maintenance. Such maintenance is being increasingly reported as a poor practice for two reasons: first, the component does not necessarily require maintenance, thus the maintenance cost is wasted, and secondly, failure catalysts are introduced into properly working components, which is worse. This paper first summarizes the technical aspects of CM including state estimation and state monitoring. The mathematical background of CM is mature enough even for commercial use in the nuclear industry. Considering the current computational capabilities of CM, its application is not limited by technical difficulties, but by a lack of desire on the part of industry to implement it. For practical applications in the nuclear industry, it may be more important to clarify and quantify the negative impact of unexpected outcomes or failures in CM than it is to investigate its advantages. In other words, while issues regarding accuracy have been targeted to date, the concerns regarding robustness should now be concentrated on. Standardizing the anticipated failures and the possibly harsh operating conditions, and then evaluating the impact of the proposed CM under those conditions may be necessary. In order to make the CM techniques practical for the nuclear industry in the future, it is recommended that a prototype CM system be applied to a secondary system in which most of the components are non-safety grade. Recently, many activities to enhance the safety and efficiency of the secondary system have been encouraged. With the application of CM to nuclear power plants, it is expected to increase profit while addressing safety and economic issues.