• Title/Summary/Keyword: scene image

검색결과 947건 처리시간 0.034초

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

CG와 동영상의 지적합성 (Intelligent Composition of CG and Dynamic Scene)

  • 박종일;정경훈;박경세;송재극
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1995년도 학술대회
    • /
    • pp.77-81
    • /
    • 1995
  • Video composition is to integrate multiple image materials into one scene. It considerably enhances the degree of freedom in producing various scenes. However, we need to adjust the viewing point sand the image planes of image planes of image materials for high quality video composition. In this paper, were propose an intelligent video composition technique concentrating on the composition of CG and real scene. We first model the camera system. The projection is assumed to be perspective and the camera motion is assumed to be 3D rotational and 3D translational. Then, we automatically extract camera parameters comprising the camera model from real scene by a dedicated algorithm. After that, CG scene is generated according to the camera parameters of the real scene. Finally the two are composed into one scene. Experimental results justify the validity of the proposed method.

실내 환경 이미지 매칭을 위한 GMM-KL프레임워크 (GMM-KL Framework for Indoor Scene Matching)

  • Kim, Jun-Young;Ko, Han-Seok
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.61-63
    • /
    • 2005
  • Retreiving indoor scene reference image from database using visual information is important issue in Robot Navigation. Scene matching problem in navigation robot is not easy because input image that is taken in navigation process is affinly distorted. We represent probabilistic framework for the feature matching between features in input image and features in database reference images to guarantee robust scene matching efficiency. By reconstructing probabilistic scene matching framework we get a higher precision than the existing feaure-feature matching scheme. To construct probabilistic framework we represent each image as Gaussian Mixture Model using Expectation Maximization algorithm using SIFT(Scale Invariant Feature Transform).

  • PDF

다중 클래스의 이미지 장면 분류 (Image Scene Classification of Multiclass)

  • 신성윤;이현창;신광성;김형진;이재완
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.551-552
    • /
    • 2021
  • 본 논문에서는 변환 학습에 기반을 둔 다중 클래스 영상 장면 분류 방법을 제시한다. ImageNet 대형 이미지 데이터 세트에서 사전 훈련된 네트워크 모델에 의존하여 다중 클래스의 자연 장면 이미지를 분류한다. 실험에서는 최적화된 ResNet 모델을 Kaggle의 Intel Image Classification 데이터 셋에 분류하여 우수한 결과를 얻었다.

  • PDF

Construction Site Scene Understanding: A 2D Image Segmentation and Classification

  • Kim, Hongjo;Park, Sungjae;Ha, Sooji;Kim, Hyoungkwan
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.333-335
    • /
    • 2015
  • A computer vision-based scene recognition algorithm is proposed for monitoring construction sites. The system analyzes images acquired from a surveillance camera to separate regions and classify them as building, ground, and hole. Mean shift image segmentation algorithm is tested for separating meaningful regions of construction site images. The system would benefit current monitoring practices in that information extracted from images could embrace an environmental context.

  • PDF

Haze Scene Detection based on Hue, Saturation, and Dark Channel Distributions

  • Lee, Y.;Yang, Seungjoon
    • International Journal of Advanced Culture Technology
    • /
    • 제8권4호
    • /
    • pp.229-234
    • /
    • 2020
  • Dehazing significantly improves image quality by restoring the loss of contrast and color saturation for images taken in the presence. However, when applied to images not taken according to the prior information, dehazing can cause unintended degradation of image quality. To avoid unintended degradations, we present a hazy scene detection algorithm using a single image based on the distributions of hue, saturation, and dark channel. Through a heuristic approach, we find out statistical characteristics of the distribution of hue, saturation, and dark channels in the hazy scene and make a detection model using them. The proposed method can precede the dehazing to prevent unintended degradation. The detection performance evaluated with a set of test images shows a high hit rate with a low false alarm ratio. Ultimately the proposed method can be used to control the effect of dehazing so that the dehazing can be applied to wide variety of images without unintended degradation of image quality.

Absolute Depth Estimation Based on a Sharpness-assessment Algorithm for a Camera with an Asymmetric Aperture

  • Kim, Beomjun;Heo, Daerak;Moon, Woonchan;Hahn, Joonku
    • Current Optics and Photonics
    • /
    • 제5권5호
    • /
    • pp.514-523
    • /
    • 2021
  • Methods for absolute depth estimation have received lots of interest, and most algorithms are concerned about how to minimize the difference between an input defocused image and an estimated defocused image. These approaches may increase the complexity of the algorithms to calculate the defocused image from the estimation of the focused image. In this paper, we present a new method to recover depth of scene based on a sharpness-assessment algorithm. The proposed algorithm estimates the depth of scene by calculating the sharpness of deconvolved images with a specific point-spread function (PSF). While most depth estimation studies evaluate depth of the scene only behind a focal plane, the proposed method evaluates a broad depth range both nearer and farther than the focal plane. This is accomplished using an asymmetric aperture, so the PSF at a position nearer than the focal plane is different from that at a position farther than the focal plane. From the image taken with a focal plane of 160 cm, the depth of object over the broad range from 60 to 350 cm is estimated at 10 cm resolution. With an asymmetric aperture, we demonstrate the feasibility of the sharpness-assessment algorithm to recover absolute depth of scene from a single defocused image.

동적 환경에서의 효과적인 움직이는 객체 추출 (An effective background subtraction in dynamic scene.)

  • 한재혁;김용진;유세운;이상화;박종일
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.631-636
    • /
    • 2009
  • 컴퓨터 비전 분야에서 전경을 추출하기 위한 영역 분할(segmentation) 방법에 대한 연구가 활발히 진행되어 왔다. 특히, 전경이 배제된 배경 영상과 현재 프레임의 차이를 이용하여 전경을 추출하는 배경 차분(background subtraction) 방법은 요구하는 계산량에 비해 우수한 품질의 전경 추출이 가능하므로 실시간 처리가 필요한 비전 시스템에 다양하게 응용되고 있다. 그러나 배경 차분 방법만을 이용하여서는 배경이 동적으로 변하는 환경에서 정확한 전경을 추출해 내지 못하는 단점이 있다. 본 논문에서는 정적인 배경과 동적인 배경이 공존하는 환경에서 영역 분할을 효과적으로 수행하는 방법을 제안한다. 제안된 방법은 정적인 배경 영역에 대해서는 기존의 배경 차분 방법을 이용하여 전경을 추출하고, 동적인 배경 영역에 대해서는 깊이 정보를 이용하여 전경을 추출하는 하이브리드 방식을 사용한다. 정적인 배경에 동적인 영상을 프로젝터로 투영하는 환경에서 제안된 방법의 효율성을 검증하였다.

  • PDF

Enhancing Depth Accuracy on the Region of Interest in a Scene for Depth Image Based Rendering

  • Cho, Yongjoo;Seo, Kiyoung;Park, Kyoung Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권7호
    • /
    • pp.2434-2448
    • /
    • 2014
  • This research proposed the domain division depth map quantization for multiview intermediate image generation using Depth Image-Based Rendering (DIBR). This technique used per-pixel depth quantization according to the percentage of depth bits assigned in domains of depth range. A comparative experiment was conducted to investigate the potential benefits of the proposed method against the linear depth quantization on DIBR multiview intermediate image generation. The experiment evaluated three quantization methods with computer-generated 3D scenes, which consisted of various scene complexities and backgrounds, under varying the depth resolution. The results showed that the proposed domain division depth quantization method outperformed the linear method on the 7- bit or lower depth map, especially in the scene with the large object.

하이퍼그래프 모델 기반의 장면 이미지 분류 기법 (Hypergraph model based Scene Image Classification Method)

  • 최선욱;이종호
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.166-172
    • /
    • 2014
  • 이미지를 각각의 카테고리로 분류하는 일은 컴퓨터 비전 분야의 중요한 문제 중 하나이다. 그러나 이미지에 존재하는 가변성, 모호성, 스케일 문제 등으로 인해 매우 도전적인 문제라고 할 수 있다. 본 논문에서는 장면 이미지를 구성하는 시멘틱 속성들의 고차원의 상호작용 관계를 고려 가능한 하이퍼그래프 기반의 모델링 기법을 제시하고 이를 장면 이미지 분류에 적용한다. 각 장면 카테고리에 준최적화된 하이퍼그래프를 생성하기 위해 확률 부분공간 기법에 기반을 둔 탐색기법을 제안하고, 이들 부분 공간 내에 속한 시멘틱 속성들의 발현량을 축약하기 위한 우도비 기반의 선형 변환 기법을 제안한다. 제안한 기법의 우수성을 검증하기 위한 실험을 통하여 제시한 기법을 통해 생성된 특징 벡터의 분별력이 기존의 기법들에서 사용된 특징 벡터들의 분별력보다 우수함을 보인다. 또한 제안한 기법을 장면 분류 데이터에 적용한 결과 기존의 기법들과 비교하여 경쟁력 있는 분류 성능을 보인다. 제안 한 기법은 이미지 분류에서 일반적으로 사용 되는 기법인 BoW+SPM 모델과 비교하여 3~4%이상의 성능 향상을 보였다.