• Title/Summary/Keyword: scatterometer system

Search Result 38, Processing Time 0.026 seconds

Measurement of Backscattering Coefficients of Rice Canopy using a Polarimetric Scatterometer System (Polarimetric Scatterometer 시스템을 이용한 벼 군락의 후방산란계수 측정)

  • Hong, Suk-Young;Hong, Jin-Young;Kim, Yi-Hyun;Oh, Yi-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.153-157
    • /
    • 2007
  • 본 논문은 지표면 현상의 관측에 날씨의 영향을 거의 받지 않는 마이크로파 L-밴드(1.95 GHz)와 C-밴드(5.3 GHz) scatterometer 시스템을 이용하여 농업과학기술원 내의 논에서 자라는 추청벼를 대상으로 2006년 5월 29일부터 10월 9일까지 생육에 따른 군락의 후방산란계수를 관측한 데이터와 작물의 생육과의 관계를 살펴보고 또한,측정 시스템의 개요,측정 시스템의 보정 방법들을 기술하고자 한다. Scatterometer 시스템의 송 수신기로 HP 8753D 벡터 네트워크 분석기를 사용하며,타워 위에 안테나를 설치하여 3.4 m의 높이에서 측정하도록 하였다. L-밴 드와 C-밴드 scatterometer는 VV-, VH-, HV-, HH-편파를 측정하여 fully polarimetric한 데이터를 얻도록 설계된 레이더시스템으로 입사각을 $30^{\circ}{\sim}60^{\circ}$에서 $10^{\circ}$간격으로 각각 30개의 독립적인 샘플을 측정하여 통계적으로 후방산란계수를 얻었다. 타워에서 발생하는 전파 잡음과 안테나 패턴의 부엽에 의한 지면에서의 수직반사(coherent 성분) 전파를 제거하기 위해 네트워크 분석기의 time gating 기능을 사용하며,55 cm 크기의 trihedral 전파반사기를 보정용 반사기로 사용하고, STCT(single target calibration technique) 방법을 이용하여 시스템을 보정하였다. 측정 결과를 분석하여 주파수, 입사각도, 편파의 변화에 대한 벼의 후방산란 특성과 벼의 생육상태과의 관계를 살펴보았다. L-밴드와 C-밴드 모두 벼의 생육과 밀접한 결과를 나타내었으나,입사각이 작을 때는 C-밴드와의 상관이 높게 나타났고 입사각이 커질수록 L-밴드와의 상관이 높게 나타났다. 편파는 L-밴드 와 C-밴드 모두 hh 편파가,입사각은 50도에서 가장 생육의 변이를 잘 설명하는 것으로 나타났다. 생육 데이터 모두를 이용한 경우보다는 유수형성기 또는 출수기 등 벼 생육의 질적인 변화를 보이는 시기에 따라 나누어 분석하는 것이 변화추이를 더 잘 설명하는 것으로 나타났다.

  • PDF

Estimation of Soil Moisture Content in Corn Field Using Microwave Scatterometer Data

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyoungdo;Na, Sangil;Jung, Gunho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.235-241
    • /
    • 2014
  • A ground-based microwave scatterometer has an advantage for monitoring soil moisture content using multi-polarization, multi-frequencies and various incidence angles. In this paper, ground-based multi-frequency (L-, C-, and X-band) polarimetric scatterometer system capable of making observations every 10 min was used to monitor the soil moisture conditions in a corn field over an entire growth cycle. Measurements of volumetric soil moisture were obtained and their relationships to the backscatter observations were examined. Time series of soil moisture content was not corresponding with backscattering coefficient pattern over the whole growth stage, although it increased until early July (Day Of Year, DOY 160). We examined the relationship between the backscattering coefficients from each band and soil moisture content of the field. Backscattering coefficients for all bands were not correlated with soil moisture content when considered over the entire stage ($r{\leq}0.48$). However, L-band Horizontal transmit and Horizontal receive polarization (HH) had a good correlation with soil moisture ($r=0.85^{**}$) when LAI was lower than 2. Prediction equations for soil moisture were developed using the L-HH data. Relation between L-HH and soil moisture shows linear pattern and related with soil moisture content ($R^2=0.77$). Results from this study show that backscattering coefficients of microwave scatterometer appear to be effective to estimate soil moisture content in the field level.

Comparison between Measurements and Scattering Model for Polarimetric Backscattering from Vegetation Canopies (식물층에서의 편파별 후방 산란 측정과 산란 모델의 비교)

  • Hong Jin-Young;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.804-810
    • /
    • 2006
  • In this paper, we describe a measurement technique for the backscattering coefficient and ground truth of a vegetation canopy in detail. A simple microwave backscattering model for vegetation canopies is verified by being compared with this measurement. An R-band$(1.7\sim2.0GHz)$ scatterometer system is used to measure the backscattering coefficient of a vegetated area in the Han-river park for various incidence angles and a wide range of the soil moisture contents. It is found that the model agrees quite well with the measurements for co-polarized radar backscatter, and needs a correction for cross polarized radar backscatter.

Investigation of Analysis Effects of ASCAT Data Assimilation within KIAPS-LETKF System (앙상블 자료동화 시스템에서 ASCAT 해상풍 자료동화가 분석장에 미치는 효과 분석)

  • Jo, Youngsoon;Lim, Sujeong;Kwon, In-Hyuk;Han, Hyun-Jun
    • Atmosphere
    • /
    • v.28 no.3
    • /
    • pp.263-272
    • /
    • 2018
  • The high-resolution ocean surface wind vector produced by scatterometer was assimilated within the Local Ensemble Transform Kalman Filter (LETKF) in Korea Institute of Atmospheric Prediction Systems (KIAPS). The Advanced Scatterometer (ASCAT) on Metop-A/B wind data was processed in the KIAPS Package for Observation Processing (KPOP), and a module capable of processing surface wind observation was implemented in the LETKF system. The LETKF data assimilation cycle for evaluating the performance improvement due to ASCAT observation was carried out for approximately 20 days from June through July 2017 when Typhoon Nepartak was present. As a result, we have found that the performance of ASCAT wind vector has a clear and beneficial effect on the data assimilation cycle. It has reduced analysis errors of wind, temperature, and humidity, as well as analysis errors of lower troposphere wind. Furthermore, by the assimilation of the ASCAT wind observation, the initial condition of the model described the typhoon structure more accurately and improved the typhoon track prediction skill. Therefore, we can expect the analysis field of LETKF will be improved if the Scatterometer wind observation is added.

Antarctic Sea Ice Distribution from Integrated Microwave Sensings

  • Hwang, Jong-Sun;Yoon, Ho-Il;Min, Kyung-Duck;Kim, Jeong-Woo;Hong, Sung-Min
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.633-633
    • /
    • 2002
  • We investigated the distributions of sea ice using various microwave remote sensing techniques in the part of Drake passage, Antarctica, between the area 45-75$^{\circ}$W and 55-66$^{\circ}$S. We used Topex/Poseidon(T/P) radar altimeter, ERS-1 altimeter, ERS-2 scatterometer, Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR), and DMSP Special Sensor Microwave/Imager(SSM/I) data. The sea ice distributions were estimated between May and Jun., 1995 and Oct. and Nov., 1998. The two altimeter measurements (T/P and ERS-1) showed good coherence with the results from the radiometer data in the given period when the ice concentration of 20% and greater was selected. The scatterometer data also showed good correlation with altimetry-implied sea ice surface. The maximum and minimum values of sea ice distribution were appeared in Aug. and Feb., respectively. In general, the sea ice distributions estimated from radar altimeter, radioneter, and scatterometer are well correlated.

  • PDF

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

Ground-Based Rotational SAR System for Field-Experiments (지상 운용 회전형 SAR 시험용 시스템 연구)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Shin, Jong-Chul;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1092-1100
    • /
    • 2011
  • A C-band ground-based rotational SAR system is presented in this paper. The rotaional SAR system is a test-bed for future rotational SAR systems which can be deployed in space and on a tower. The test-bed system is designed for imaging the electromagnetic scattering from earth surfaces and buried targets. This paper also presents the examination results of the generated SAR images. This rotational SAR system is basically consisted of the network-analyzer based HPS(Hongik Polarimetric Scatterometer) and a horizontally rotating arm. Several SAR images were obtained using the rotational SAR system for various target areas. To verify this system, we simulated the SAR images for the rotational SAR using the FDTD algorithm and compared between the measured and simulated SAR images. The rotational SAR system is operated at the center frequency of 5 GHz and various frequency bandwidth within 0.5~2 GHz to change the resolution of SAR images.

A Study on the Measurement of River Ice Thickness by Using X-band Scatterometer (X-밴드 산란계를 이용한 하천 얼음 두께 측정에 관한 연구)

  • Han, Hyang-Sun;Kim, Bum-Jun;Lee, Hoon-Yol
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • In this study, we setup a ground-based scatterometer using an antenna of which the center frequency is 9.5 GHz (X-band), and measured radar backscatterings from air/ice and ice/water interfaces to extract ice thickness. Both of air/ice and ice/water interfaces make strong radar backscatterings and so we can clearly identify two peaks in measured data by scatterometer. By using the distance of two peaks and refractive index of ice, we confirmed that it is possible to measure ice thickness. Field survey was performed at the downstream of Jiam River flowing into Chuncheon Lake. We measured radar backscattering from river ice along a survey path and extracted ice thickness. The ice thickness map of the downstream of Jiam River was produced by using kriging which is one of well known interpolation methods. The ice thickness was about 50 cm along the mainstream while ice was thin as 30 ~ 40 cm at a fast-flowing meander. Ice thickness was particularly thinner at some locations than that of surrounding areas even in the mainstream region of constant flow. This was because of impurities in ice or artificially formed refrozen holes after fishing. We expect that this study helps to expand utilization field of X-band SAR and airborne scatterometer system.

Examination of the Radiative Transfer Model for Computing Microwave Polarimetric Scattering Coefficients of Vegitation Canopies (풀밭에서의 마이크로파 편파별 산란 계수 계산용 Radiative Transfer 모델의 정확성검토)

  • 김재형;이진원;오이석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.763-772
    • /
    • 2000
  • The Radiative Transfer Model(RTM) for computation of microwave polarimetric backscattering coefficients of a various types of vegitation canopies has been examined in this paper. Leaves in the vegitation canopy are modeled by rectangular resistive sheets, which sizes and orientations are randomly distributed. Surface roughness and soil moisture of soil surface are considered in this computation. The backscattering coefficients of grasslands are computed for various values of radar parameters and canopy parameters. A polarimetric scatterometer radar system at 15 GHz has been used for measurement of the scattering coefficient from a grass canopy and a cabbage canopy. The computation results obtained by the RTM for the canopies are compared with the measurement for examination of the RTM.

  • PDF

Estimation of Sea Surface Wind Speed and Direction From RADARSAT Data

  • Kim, Duk-Jin;Wooil-M. Moon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.485-490
    • /
    • 1999
  • Wind vector information over the ocean is currently obtained using multiple beam scatterometer data. The scatterometers on ERS-1/2 generate wind vector information with a spatial resolution of 50km and accuracies of $\pm$2m/s in wind speed and $\pm$20$^{\circ}$ in wind direction. Synthetic aperture radar (SAR) data over the ocean have the potential of providing wind vector information independent of weather conditions with finer resolution. Finer resolution wind vector information can often be useful particularly in coastal regions where the scatterometer wind information is often corrupted because of the lower resolution system characteristics which is often contaminated by the signal returns from the coastal areas or ice in the case of arctic environments. In this paper we tested CMOD_4 and CMOD_IFR2 algorithms for extracting the wind vector from SAR data. These algorithms require precise estimation of normalized radar cross-section and wind direction from the SAR data and the local incidence angle. The CMOD series algorithms were developed for the C-band, VV-Polarized SAR data, typically for the ERS SAR data. Since RADARSAT operates at the same C-band but with HH-Polarization, the CMOD series algorithms should not be used directly. As a preliminary approach of resolving with this problem, we applied the polarization ratio between the HH and VV polarizations in the wind vectors estimation. Two test areas, one in front of Inchon and several sites around Jeju island were selected and investigated for wind vector estimation. The new results were compared with the wind vectors obtained from CMOD algorithms. The wind vector results agree well with the observed wind speed data. However the estimation of wind direction agree with the observed wind direction only when the wind speed is greater than approximately 3.0m/s.

  • PDF