• Title/Summary/Keyword: scattering distance

Search Result 175, Processing Time 0.025 seconds

Analysis of Excluded Volume Effect in Theta Solvent Systems of Polymethyl Methacrylate and Polystyrene by Means of a Modified Scaled Temperature Parameter

  • Kim, Myeong Ju;Park, Il Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1255-1260
    • /
    • 2001
  • The expansion of two different kinds of hydrodynamic size of polymethyl methacrylate (PMMA Mw: 1.56- 2.04 ${\times}$ 106 g/mol) has been measured by dynamic light scattering and viscometry above the Flory $\theta$ temperature of the variou s solvents such as n-butyl chloride, 3-heptanone, and 4-heptanone. The expansion of PMMA chains was analyzed in terms of universal temperature parameters and also compared with previous results of polystyrene (PS) system. First it was found that simple $\tau/{\tau}c$ parameter no longer had its universality for the expansion behavior of hydrodynamic size in the chemically different linear polymer chains. However after modifying ${\tau}/{\tau}c$ parameter into $(Mw/Ro2)3}2(\tau/\tauc)$, we observed a much better universality for both PMMA and PS systems. Here Mw, Ro, $\tau[=(T-{\theta}$)/${\theta}$]$, and ${\tau}c[=({\theta}-Tc)/Tc]$ are defined as the weight average molecular weight, the unperturbed end-to-end distance, the reduced temperature and the reduced critical temperature, respectively.

Portable Infrared Laser Transmitter Based on a Beam Shaper Enabling a Highly Uniform Detectable Beam Width

  • Yue, Wenjing;Kim, Haeng-Jung;Lee, Sang-Shin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.486-490
    • /
    • 2013
  • A portable infrared laser transmitter delivering a highly uniform detectable beam was demonstrated. It incorporates a flexible beam shaper, comprising a perforated diffuser sheet in conjunction with a pinhole. The beam shaper plays the prominent role of flexibly tailoring the incoming light via both scattering and diffraction, in order to equalize the effective beam width over a long distance. The intensity profile of a generated beam was practically observed, demonstrating that a substantially uniform beam of 70-cm width was achieved for a given threshold detection level, with an average deviation of 6% over a range of 600 m.

Operating Voltage of Optical Instruments based on Polymer-dispersed Liquid Crystal for Inspecting Transparent Electrodes

  • Yeo, Sunggu;Oh, Yonghwan;Lee, Ji-Hoon
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 2017
  • Optical instruments based on polymer-dispersed liquid crystal (PDLC) have been used to inspect transparent electrodes. Generally the operating voltage of an inspection instrument using PDLC is very high, over 300 V, reducing its lifetime and reliability. The operating-voltage issue becomes more serious in the inspection of touch-screen panel (TSP) electrodes, due to the bezel structure protruding over the electrodes. We have theoretically calculated the parameters affecting the operating voltage as a function of the distance between the TSP and the PDLC, the thickness, and the dielectric constant of the sublayers when the inspection module was away from the TSP electrodes. We have experimentally verified the results, and have proposed a way to reduce the operating voltage by substituting a plastic substrate film with a hard coating layer of smaller thickness and higher dielectric constant.

Deep learning-based de-fogging method using fog features to solve the domain shift problem (Domain Shift 문제를 해결하기 위해 안개 특징을 이용한 딥러닝 기반 안개 제거 방법)

  • Sim, Hwi Bo;Kang, Bong Soon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1319-1325
    • /
    • 2021
  • It is important to remove fog for accurate object recognition and detection during preprocessing because images taken in foggy adverse weather suffer from poor quality of images due to scattering and absorption of light, resulting in poor performance of various vision-based applications. This paper proposes an end-to-end deep learning-based single image de-fogging method using U-Net architecture. The loss function used in the algorithm is a loss function based on Mahalanobis distance with fog features, which solves the problem of domain shifts, and demonstrates superior performance by comparing qualitative and quantitative numerical evaluations with conventional methods. We also design it to generate fog through the VGG19 loss function and use it as the next training dataset.

A Study on the Risk of Fire Caused by Sparks during Grinding Operation (그라인딩 작업 중 발생하는 불티의 화재 예방에 관한 연구)

  • Seong-En Kim;Geun-Chul Lee;Kyong-Jin Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.751-756
    • /
    • 2023
  • In this study, We investigated a fire case and performed an experiment to prevent fire from sparks that is generated during grinding operation. Before conduct the test, confirmed that the generating mechanism of fire-flakes in working grinder and the fire experiment was conducted using commonly tools, flammable materials in industrial field. in result, It could be measured scattering distance, temperature, ignition possibility by type of combustible materials. Based on the results of this study, We are expected to be used as basic data for fire prevention in grinding Industry.

Analysis of Aerosol Optical Properties in Seoul Using Skyradiometer Observation (스카이라디오미터 관측을 통한 서울 상공 에어러솔의 광학적 특성 분석)

  • Koo, Ja-Ho;Kim, Jhoon;Kim, Mi-Jin;Cho, Hi Ku;Aoki, Kazuma;Yamano, Maki
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.407-420
    • /
    • 2007
  • Optical characteristics of aerosols in Seoul are investigated from the measurements of sky radiance by Skyradiometer at Yonsei University from December 2005 to November 2006. Aerosol optical depth (AOD) shows a maximum in June due to weak ventilation and particle growth by aging process and hygroscopic effect. Single scattering albedo (SSA) and Angstrom Exponent (AE) show the lowest value in spring due to the Asian dust. It is clear that coarse mode is dominant in spring and fine mode is dominant in summer from the volume size distribution measured in this study. The explanations on the changes of aerosol loadings are provided through the correlation between AOD and AE, while the pattern of wavelength dependency related to particle size is shown through the correlation between SSA and AE. Backward trajectory analysis by HYSPLIT provides information about origin of aerosol, which allows us to classify the case according to the source region and the path distance. Although the direction of backward trajectory traces back mostly to west, coarse mode particle is dominant in the case of long pathway and fine mode particle is dominant in the case of short pathway. This discrepancy is caused by the regional difference of emitted particles.

Packet Error Rate comparsion of Different Modulation Formats over Terrestrial Optical Wireless Communication in Turbulent Atmosphere (교란대기 지상 광무선 통신에서 변조방식에 따른 패킷 오류율 비교)

  • Hong, Kwon-Eui
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.12
    • /
    • pp.856-863
    • /
    • 2014
  • In the terrestrial optical wireless communication(OWC), the performance is affected by atmospheric turbulence and particles in the air. The received signal power loss mainly is caused by turbulence and scattering. To minimize the adverse atmospheric effects, the OWC used optical signal modulation, such as OOK, PPM and DPIM. In this paper, the packet error rate(PER) was analyzed above three modulation methods to ground optical link in atmospheric turbulence, scattering and link distance. The OWC system used three wavelengths which are 850nm, 1310nm and 1550nm. I assumed the atmospheric turbulence intensity is weak, so the refractive index is $Cn2{\approx}10-14m-2/3$ and the visibility is 2km. The numerical results shown that the L-DPIM scheme and the wavelength 1550nm are better than other modulation methods and wavelengths.

Improved Method of Moments Using Hybrid Technique of Galerkin's and Interpolation Methods for Numerical Analysis of Electromagnetic Waves (전자파 수치 해석을 위해 갤러킨 기법과 보간법을 혼용하여 개선시킨 모멘트법)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.541-550
    • /
    • 2012
  • An improved method of moments using a hybrid Galerkin-interpolation technique for numerical analysis of electromagnetic wave scattering in the 3-dimensional space is presented in this paper. Basically, the EFIE(electric field integral equation) and RWG(Rao-Wilton-Glisson) basis function are used to compute a property of electromagnetic wave scattering. We propose a hybrid technique combining the existing Galerkin's method with the interpolation method to improve the efficiency of the numerical computation. Then, an index of relative distance of each cells was defined to distinguish the relatively far elements, which interpolation method can be applied. To verify the performance of the proposed technique, the analytical Mie-series solution was used to compute the theoretical RCS of a conducting sphere for the purpose of comparison. We also applied this hybrid technique to various scatterers such as trihedral/omni-directional corner-reflectors to analyze the radar backscattering properties.

Susceptibility of Pine Wood Nematode Vectors to ULV Insecticides Sprayed from an Unmanned Helicopter (무인항공기를 활용한 유인항공기용 작물보호제에 대한 소나무재선충 매개충의 약제 감수성)

  • Kim, Junheon;Nam, Sangjune;Song, Jinyoung
    • Korean journal of applied entomology
    • /
    • v.59 no.2
    • /
    • pp.83-91
    • /
    • 2020
  • We assessed efficacy of spraying pesticides from an unmanned helicopter to control two insect species, Monochamus alternatus and M. saltuarius, which are vectors of pine wood nematodes. Control efficacy of thiacloprid FL (33×), acetamiprid ME (33×), and flupyradifurone SL (33×) was determined by placing caged insects in the canopy of pine trees (Pinus sp). Water-sensitive paper was used to record the spray pattern of pesticide droplets and the degree of coverage; furthermore, we investigated peripheral scattering due to spraying. The three pesticides showed > 96% control efficacy against the targeted vectors, and pesticide droplet spray patterns were similar. Peripheral scattering was observed up to 20 m in front and 10 m to the left, right, and behind the targeted area. The coverage index of all the directions at 5 and 10 m distance was 6-7 and 2, respectively.

Effect of Annealing of Nafion Recast Membranes Containing Ionic Liquids

  • Park, Jin-Soo;Shin, Mun-Sik;Sekhon, S.S.;Choi, Young-Woo;Yang, Tae-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • The composite membranes comprising of sulfonated polymers as matrix and ionic liquids as ion-conducting medium in replacement of water are studied to investigate the effect of annealing of the sulfonated polymers. The polymeric membranes are prepared on recast Nafion containing the ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate ($EMIBF_4$). The composite membranes are characterized by thermogravitational analyses, ion conductivity and small-angle X-ray scattering. The composite membranes annealed at $190^{\circ}C$ for 2 h after the fixed drying step showed better ionic conductivity, but no significant increase in thermal stability. The mean Bragg distance between the ionic clusters, which is reflected in the position of the ionomer peak (small-angle scattering maximum), is larger in the annealed composite membranes containing $EMIBF_4$ than the non-annealed ones. It might have been explained to be due to the different level of ion-clustering ability of the hydrophilic parts (i.e., sulfonic acid groups) in the non- and annealed polymer matrix. In addition, the ionic conductivity of the membranes shows higher for the annealed composite membranes containing $EMIBF_4$. It can be concluded that the annealing of the composite membranes containing ionic liquids due to an increase in ion-clustering ability is able to bring about the enhancement of ionic conductivity suitable for potential use in proton exchange membrane fuel cells (PEMFCs) at medium temperatures ($150-200^{\circ}C$) in the absence of external humidification.