References
- S. S. Sekhon, J.-S. Park, J.-S. Baek, S.-D. Yim, T.-H. Yang, and C.-S. Kim, ‘Small-angle X-ray scattering study of water free fuel cell membranes containing ionic liquids’ Chem. Mater., 22, 803 (2010). https://doi.org/10.1021/cm901465p
-
Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, ‘Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above
$100{^{\circ}C}$ ’ J. Chem. Mater., 15, 4896-4915 (2003). https://doi.org/10.1021/cm0310519 - J. Roziere and D. J. Jones, ‘Non-fluorinated polymer materials for proton exchange membrane fuel cells’ Annu. Rev. Mater. Res., 33, 503 (2003). https://doi.org/10.1146/annurev.matsci.33.022702.154657
- E. Cho, J.-S. Park, S. S. Sekhon, G.-G. Park, T.-H. Yang, W.-Y. Lee, C.-S. Kim and S.-B. Park, ‘A Study on Proton Conductivity of Composite Membranes with Various Ionic Liquids for High-Temperature Anhydrous Fuel Cells’ J. Electrochem. Soc., 156, B197 (2009). https://doi.org/10.1149/1.3031406
- S. S. Sekhon, J.-S. Park, and Y.-W Choi, ‘A SAXS study on nanostructure evolution in water free membranes containing ionic liquid: from dry membrane to saturation’ Phys. Chem. Chem. Phys., 12, 13763 (2010). https://doi.org/10.1039/c0cp00966k
- S. S. Sekhon, J.-S. Park, E. Cho. Y.-G. Yoon, C.-S. Kim, and W.-Y. Lee, ‘Morphology studies of high temperature proton conducting membranes containing hydrophilic/hydrophobicionic liquids’ Macromolecules, 42, 2054 (2009). https://doi.org/10.1021/ma8027112
- J.-S. Baek, J.-S Park, S. S. Sekhon, T.-H. Yang, Y.-G. Shul, and J.-H. Choi, ‘Preparation and characterization of nonaqueous proton-conducting membranes with the low content of ionic liquids’ Fuel Cells, 10, 762 (2010). https://doi.org/10.1002/fuce.200900176
- J. Li, X. Yang, H. Tang, and M. Pan, ‘Durable and high performance Nafion membrane prepared through hightemperature annealing methodology’ J. Membr. Sci., 361, 38 (2010). https://doi.org/10.1016/j.memsci.2010.06.016
- C. R. M Robert and B. Moore, ‘Procedure for preparing solution-cast perfluorosulfonate ionomer films and membranes’ Anal. Chem., 58, 2570 (1986). https://doi.org/10.1021/ac00125a047
- C. R. M. R. B. Moore, ‘Chemical and morphological properties of solution-cast perfluorosulfonate ionomers, Macromolecules’ 21, 1334 (1988). https://doi.org/10.1021/ma00183a025
- G. Gebel, P. A. Aldebert, and M. Pineri, ‘Structure and related properties of solution cast perfluorosulfonated ionomer films’ Macromolecules, 20, 1425 (1987). https://doi.org/10.1021/ma00172a049
- Y. H. Luan, Y. M. Zhang, H. Zhang, L. Li, H. Li, and Y. G. Liu, ‘Annealing effect of perfluorosulfonated ionomer membranes on proton conductivity and methanol permeability’ J. Appl. Polym. Sci., 107, 396 (2008). https://doi.org/10.1002/app.27070
- Y. Woo, S. Y. Oh, Y. S. Kang, and B. Jung, ‘Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell’ J. Membr. Sci., 220, 31 (2003). https://doi.org/10.1016/S0376-7388(03)00185-6
- T. D. Gierke, G. E. Munn, and F. C. Wilson, ‘The morphology in nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies’ J. Polym. Sci.: Polym. Phys. Ed., 19, 1687 (1981). https://doi.org/10.1002/pol.1981.180191103
-
B. Dreyfus, G. Gebel, G. P. Aldebert, M. Pineri, and M. Escoubes, ‘Distribution of the
in hydrated perfluorinated ionomer membranes from SANS experiments’ J. Phys. France, 51, 1341 (1990). https://doi.org/10.1051/jphys:0199000510120134100 - G. Gebel and J. Lambard, ‘Small-Angle Scattering Study of Water-Swollen Perfluorinated Ionomer Membranes’ Macromolecules, 30, 7914 (1997). https://doi.org/10.1021/ma970801v
- S. Kumar and M. Pineri, ‘Interpretation of small-angle xray and neutron scattering data for perfluorosulfonated ionomer membranes’ J. Polym. Sci. B., 24, 1767 (1986). https://doi.org/10.1002/polb.1986.090240812
- A. S. Ioselevich, A. A. Kornyshev, and J. H. G. Steinke, ‘Fine Morphology of Proton-Conducting Ionomers’ J. Phys. Chem. B., 108, 11953 (2004). https://doi.org/10.1021/jp049687q
- G. Gebel, ‘Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution’ Polymer, 41, 5829 (2000). https://doi.org/10.1016/S0032-3861(99)00770-3
- L. Rubatat, A. L. Rollet, G. Gebel, and O. Diat, ‘Evidence of Elongated Polymeric Aggregates in Nafion’ Macromolecules, 35, 4050 (2002). https://doi.org/10.1021/ma011578b
- L. Rubatat, A. L. Rollet, G. Gebel, and O. Diat, Fibrillar ‘Structure of Nafion: Matching Fourier and Real Space Studies of Corresponding Films and Solutions’ Macromolecules, 37, 7772 (2004). https://doi.org/10.1021/ma049683j
Cited by
- Modification of Nafion Membranes by IL-Cation Exchange: Chemical Surface, Electrical and Interfacial Study vol.2012, 2012, https://doi.org/10.1155/2012/349435
- Development of Ionomer Binder Solutions Using Polymer Grinding for Solid Alkaline Fuel Cells vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.107
- Preparation and Characterization of Nafion Composite Membranes Containing 1-ethyl-3-methylimidazolium Tetracyanoborate vol.15, pp.1, 2012, https://doi.org/10.5229/JKES.2012.15.1.035
- Improvement of pervaporation PVA membranes by the controlled incorporation of fullerenol nanoparticles vol.96, 2016, https://doi.org/10.1016/j.matdes.2016.02.046
- Decal Transfer Method of Hydrocarbon Membranes for Fabricating a Membrane Electrode Assembly (MEA) vol.13, pp.3, 2017, https://doi.org/10.7849/ksnre.2017.9.13.3.051