• Title/Summary/Keyword: scanned data

Search Result 484, Processing Time 0.021 seconds

Analysis of the Effect of Entry-Level 3D Printer Materials on CT Images (보급형 3D프린터 재료가 CT 영상에 미치는 영향 분석)

  • Se-Hwan, Park;Hyun-Jung, Jo;Sung-Jun, Lee;Song-Bin, Lee;Sang-Hyub, Park;Dae-Yeon, Ryu;Yeong-Cheol, Heo
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.673-680
    • /
    • 2022
  • In this study, based on PLA, we analyzed the Hounsfield Unit (HU) of materials containing 20% each of aluminum, wood, copper, carbon, and marble, and tried to analyze how they affect the image. A cylindrical phantom of 5×30×30 ㎣ (thickness×diameter×height) was fabricated using a entry-level 3D printer. The kV was changed to 80, 100 and 120, and the mAs was changed to 100 and 200 mAs, and the phantom in the center of the table was cross-scanned under a total of six conditions. A circular ROI was set using image J program and the quantification value of the material part HU and the quantification value of the peripheral part CNR were obtained. The HU average of the material part increased in the order of [PLA - wood 20%], [PLA - marble 20%], [PLA - carbon 20%], [PLA 100%], [PLA - aluminum 20%], [PLA - copper 20%] (p<0.05) a negative correlation was confirmed with the HU by increasing kV. It was confirmed that the CNR value in the peripheral area increased in the order of [PLA - marble 20%], [PLA - copper 20%], [PLA - carbon 20%], [PLA - wood 20%], [PLA - aluminum 20%], and [PLA - 100%] (p<0.05). Human organs with similar HU values for each material are [PLA - copper 20%] compact bone, [PLA - aluminum 20%] cancellous bone, [PLA 100%] coagulated blood, [PLA - carbon 20%] and [PLA - marble 20%] liver, muscle, spleen and [PLA - wood 20%] had similar values to fat. In addition, we confirmed the blur phenomenon that blurs the image around the filament with all materials, and confirmed that [PLA 100%] especially has the most blur around the filament. Therefore, it is considered desirable to reflect the HU value of the target organ and consider cloudiness around the phantom when selecting materials for medical phantom fabrication, and this research can provide basic data.

A Comparative Study of the Standard Uptake Values of the PET Reconstruction Methods; Using Contrast Enhanced CT and Non Contrast Enhanced CT (PET/CT 영상에서 조영제를 사용하지 않은 CT와 조영제를 사용한 CT를 이용한 감쇠보정에 따른 표준화섭취계수의 비교)

  • Lee, Seung-Jae;Park, Hoon-Hee;Ahn, Sha-Ron;Oh, Shin-Hyun;NamKoong, Heuk;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.235-240
    • /
    • 2008
  • Purpose: At the beginning of PET/CT, Computed Tomography was mainly used only for Attenuation Correction (AC), but as the performance of the CT have been increase, it could give improved diagnostic information with Contrast Media. But it was controversial that Contrast Media could affect AC on PET/CT scan. Some submitted thesis' show that Contrast Media could overestimate when it is for AC data processing. On the contrary, the opinion that Contrast Media could be possible to affect the alteration of SUV because of the overestimated AC. But it does not have a definite effect on the diagnosis. Thus, the affection of Contrast Media on AC was investigated in this study. Materials and Methods: Patient inclusion criteria required a history of a malignancy and performance of an integrated PET/CT scan and contrast- enhanced CT scan within a 1-day period. Thirty oncologic patients who had PET/CT scan from December 2007 to June 2008 underwent staging evaluation and met these criteria. All patients fasted for at least 6 hr before the IV injection of approximately 5.6 MBq/kg (0.15 mCi/kg) of $^{18}F$-FDG and were scanned about 60 min after injection. All patients had a whole body PET/CT performed without IV contrast media followed by a contrast-enhanced CT on the Discovery STe PET/CT scanner. CT data were used for AC and PET images came out after AC. The ROIs drew and measured SUV. A paired t-test of these results was performed to assess the significance of the difference between the SUV obtained from the two attenuation corrected PET images. Results: The mean and maximum Standardized Uptake Values (SUV) for different regions averaged over all Patients. Comparing before using Contrast Media and after using, Most of ROIs have the increased SUV when it did Contrast Enhanced CT compare to Non-Contrast enhanced CT. All regions have increased SUV and also their p value was under 0.05 except the mean SUV of the Heart region. Conclusion: In this regard, the effect on SUV measurements that occurs when a contrast-enhanced CT is used for attenuation correction could have significant clinical ramifications. But some submitted thesis insisted that the percentage change in SUV that can determine or modify clinical management of oncology patients is small. Because there was not much difference that could be discovered by interpreter. But obviously the numerical change was occurred and on the stage finding primary region, small change would be base line, such as the region of liver which has greater change than the other regions needs more attention.

  • PDF

The Consideration of the Region of Interest on $^{99m}Tc$-DMSA Renal Scan in Pediatric Hydronephrosis Patients (수신증을 진단 받은 소아 환자의 DMSA 신장 검사에서 정확한 관심영역 설정에 대한 고찰)

  • NamKoong, Hyuk;Lee, Dong-Hyuk;Oh, Shin-Hyun;Cho, Seok-Won;Park, Hoon-Hee;Kim, Jung-Yul;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Purpose: Most of diagnosis in the pediatric hydronephrosis patients have been performed $^{99m}Tc$-DMSA renal scan. Then the region of interest (ROI) is set for comparative analysis of uptake ratio in left-right kidney after acquiring the image. But if the equipment set an automatic ROI, the ROI could include expanded renal pelvis due to hydronephrosis and the uptake ratio of left-right kidney will be incorrect result. Therefore this study compared both ROIs including expanded renal pelvis and excluding renal pelvis through experiment using normal kidney phantom and expanded renal pelvis phantom and suggested setting method of improved ROI. In addition, this study have been helped by readout doctor for investigate distinction radiopharmaceutical uptake between renal cortex and remained urine by expanded renal pelvis. Materials and Methods: The both of renal phantoms were filled with water and shacked with $^{99m}TcO_4$ 111 MBq. In order to describe the expanded renal pelvis, the five latex balloon were all filled with 10 mL water and each of balloon was mixed with $^{99m}TcO_4$ 18.5, 37, 55.5, 74, 92.5 MBq. And we made phantom with fixed $^{99m}TcO_4$activity of 37 MBq and mixed water 5, 10, 15, 20, 25 mL in each balloon. The left kidney was fixed its shape and the right kidney was modified like as hydronephrosis kidney by attached the latex balloons. And the acquiring counts were 2 million. After acquisition, we compared the image of ROI with Expanded renal pelvis and the image of ROI without renal pelvis for analyzing difference in the uptake ratio of left-right kidney and for reproducibility, set the ROI 5 times in the same images. Patients were injected $^{99m}Tc$-DMSA 1.5~1.9 MBq/kg and scanned 3 to 4 hours after injection. The each of 3 skillful radio technologists performed the comparing estimation by setting ROI. To determine statistical significance between two data, SPSS (ver. 17) Wilcoxon Signed Ranks Test was used. Results: As a result of renal phantom's experiment, we compared with average of counts Background (BKG) ratios in the setting of ROI including expanded renal pelvis and setting of excluding expanded renal pelvis. Therefore, they can obtain changed counts and changed ratios. Patient also can obtain same results. In addition, the radiopharmaceutical uptake in expanded renal pelvis was come out the remained urine that couldn't descend to ureter by the help of readout doctor. Conclusion: As above results, the case of setting ROI including expanded renal pelvis was more abnormally increasing uptake ratio than the case of setting ROI excluding expanded renal pelvis in analysis the uptake ratio in left-right kidney of hydronephrosis. Because of the work convenience and prompted analysis, the automatic ROI is generally used. But in case of the hydronephrosis study, we should set the manual ROI without expanded renal pelvis for an accurate observation of the uptake ratio of left-right kidney since the radiopharmaceutical uptake in expanded renal pelvis is the remained urine.

  • PDF

Quantitative Assessment Technology of Small Animal Myocardial Infarction PET Image Using Gaussian Mixture Model (다중가우시안혼합모델을 이용한 소동물 심근경색 PET 영상의 정량적 평가 기술)

  • Woo, Sang-Keun;Lee, Yong-Jin;Lee, Won-Ho;Kim, Min-Hwan;Park, Ji-Ae;Kim, Jin-Su;Kim, Jong-Guk;Kang, Joo-Hyun;Ji, Young-Hoon;Choi, Chang-Woon;Lim, Sang-Moo;Kim, Kyeong-Min
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2011
  • Nuclear medicine images (SPECT, PET) were widely used tool for assessment of myocardial viability and perfusion. However it had difficult to define accurate myocardial infarct region. The purpose of this study was to investigate methodological approach for automatic measurement of rat myocardial infarct size using polar map with adaptive threshold. Rat myocardial infarction model was induced by ligation of the left circumflex artery. PET images were obtained after intravenous injection of 37 MBq $^{18}F$-FDG. After 60 min uptake, each animal was scanned for 20 min with ECG gating. PET data were reconstructed using ordered subset expectation maximization (OSEM) 2D. To automatically make the myocardial contour and generate polar map, we used QGS software (Cedars-Sinai Medical Center). The reference infarct size was defined by infarction area percentage of the total left myocardium using TTC staining. We used three threshold methods (predefined threshold, Otsu and Multi Gaussian mixture model; MGMM). Predefined threshold method was commonly used in other studies. We applied threshold value form 10% to 90% in step of 10%. Otsu algorithm calculated threshold with the maximum between class variance. MGMM method estimated the distribution of image intensity using multiple Gaussian mixture models (MGMM2, ${\cdots}$ MGMM5) and calculated adaptive threshold. The infarct size in polar map was calculated as the percentage of lower threshold area in polar map from the total polar map area. The measured infarct size using different threshold methods was evaluated by comparison with reference infarct size. The mean difference between with polar map defect size by predefined thresholds (20%, 30%, and 40%) and reference infarct size were $7.04{\pm}3.44%$, $3.87{\pm}2.09%$ and $2.15{\pm}2.07%$, respectively. Otsu verse reference infarct size was $3.56{\pm}4.16%$. MGMM methods verse reference infarct size was $2.29{\pm}1.94%$. The predefined threshold (30%) showed the smallest mean difference with reference infarct size. However, MGMM was more accurate than predefined threshold in under 10% reference infarct size case (MGMM: 0.006%, predefined threshold: 0.59%). In this study, we was to evaluate myocardial infarct size in polar map using multiple Gaussian mixture model. MGMM method was provide adaptive threshold in each subject and will be a useful for automatic measurement of infarct size.