• 제목/요약/키워드: scan mode

검색결과 197건 처리시간 0.028초

Development and validation of a qualitative GC-MS method for methamphetamine and amphetamine in human urine using aqueous-phase ethyl chloroformate derivatization

  • Kim, Jiwoo;Sim, Yeong Eun;Kim, Jin Young
    • 분석과학
    • /
    • 제33권1호
    • /
    • pp.23-32
    • /
    • 2020
  • Methamphetamine (MA) is the most common and available drug of abuse in Korea and its primary metabolite is amphetamine (AP). Detection of AP derivatives, such as MA, AP, phentermine (PT), MDA, MDMA, and MDEA by the use of immunoassay screening is not reliable and accurate due to cross-reactivity and insufficient specificity/sensitivity. Therefore, the analytical process accepted by most urine drug-testing programs employs the two-step method with an initial screening test followed by a more specific confirmatory test if the specimen screens positive. In this study, a gas chromatography-mass spectrometric (GC-MS) method was developed and validated for confirmation of MA and AP in human urine. Urine sample (500 µL) was added with N-isopropylbenzylamine as internal standard and ethyl chloroformate as a derivatization reagent, and then extracted with 200 µL of ethyl acetate. Extracted samples were analysed with GC-MS in the SIM/ Scan mode, which were screened by Cobas c311 analyzer (Roche/Hitachi) to evaluate the efficiency as well as the compatibility of the GC-MS method. Qualitative method validation requirements for selectivity, limit of detection (LOD), precision, accuracy, and specificity/sensitivity were examined. These parameters were estimated on the basis of the most intense and characteristic ions in mass spectra of target compounds. Precision and accuracy were less than 5.2 % (RSD) and ±14.0 % (bias), respectively. The LODs were 3 ng/mL for MA and 1.5 ng/mL for AP. At the screening immunoassay had a sensitivity of 100% and a specificity of 95.1 % versus GC-MS for confirmatory testing. The applicability of the method was tested by the analysis of spiked urine and abusers' urine samples.

임베디드 리눅스 기반의 서버와 웹 어플리케이션을 이용한 곡물 선별 모니터링 시스템 (Monitoring system for grain sorting using embedded Linux-based servers and Web applications)

  • 박세현;금영욱;김현재
    • 한국정보통신학회논문지
    • /
    • 제20권12호
    • /
    • pp.2341-2347
    • /
    • 2016
  • 본 논문에서는 고속 FPGA 및 임베디드 리눅스를 사용하여 곡물 선별 모니터링 시스템을 구현하였다. 기존의 곡물 선별 모니터링 시스템은 독립형 모드에 기반으로 설계하였는데 비해 제안 된 시스템은 웹 서버와 웹 응용 프로그램 기반으로 설계하였다. 제안된 곡물 선별 시스템은 웹 서버 상에서 FPGA의 고속 하드웨어 인터페이스를 설계하였다. 제안 된 시스템은 리눅스 웹 서버의 멀티태스킹의 장점과 FPGA의 고속 하드웨어의 장점을 갖는다. 고속 레이트 라인 스캔 CCD 카메라의 제어 로직, 무게 중심점 추출 방법, 그리고 HSL 디코딩 및 웹 서버의 인터페이스는 FPGA로 구현하였다. 구현된 모니터링 시스템은 웹 애플리케이션에 의해 곡물 선별 모니터링과 시스템 고장 및 복구를 원격으로 제어 할 수 있다는 장점을 갖는다. 그 결과, 기존의 시스템에 비해 곡물 선별 성능을 업그레이드 할 수 있었다.

흡착 벗김 전압전류법에 의한 해수중 미량 철의 정량 (Determination of Iron in Seawater by Adsorptive Stripping Voltammetry)

  • 채명준;김경;권영순
    • 대한화학회지
    • /
    • 제39권3호
    • /
    • pp.186-190
    • /
    • 1995
  • 바닷물 중의 미량 철을 별도의 사전 농축이나 분리절차 없이 바로 정량할 수 있을 만큼 예민하면서 비용이 절감되는 손쉬운 흡착 벗김 분석 방법을 제안한다. 용액의 pH가 8.0인 붕산염 완충액에서 철/카테콜 착물을 수은 방울전극에 흡착시켜 수집한 후 음극 벗김과정을 수행하면서 펄스차이 방식 전류를 측정한다. 최적조건은 2.5 mM 붕산염, pH 8.0, 2 mM 카테콜, 수집전위 -0.25 V, 수집시간 1~3분이었다. 이 조건에서의 검출한계는 1.5 nM Fe였다. 붕산염 완충용액(높은 pH)의 사용은 기존의 지지전해질에서 문제되던 구리의 방해를 피할 수 있음은 물론 바탕선의 기울기가 완만해져 바탕선 잡기가 매우 좋았으므로 정밀성의 향상을 기대할 수 있다. 표준물 첨가법에 의해 실제시료에 적용해 본 결과 기대에 잘 부합하였다.

  • PDF

디클로벤지딘에 폭로된 흰쥐의 간장세포와 방광 상피세포에 형성된 DNA adducts의 $^{32}P-postlabeling$과 GC/MS-SIM에 의한 분석

  • 이진헌;신호상;장미선
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2002년도 춘계 국제 학술대회
    • /
    • pp.49-51
    • /
    • 2002
  • To identify and evaluate the dichlorobenzidine(DCB)-DNA adducts in liver cell and bladder epithelial cells by $^{32}$ P-postlabeling and GC/MS-SIM, we orally exposed the dichlorobenzidine (20mg/kh body wt.,/day)to male sprague-dawley rats for 14 days. Two kinds of DCB-DNA adduct were found at the same site of thin layer chromatogram of $^{32}$ P-postlabeling method in liver cells and bladder epithelial cells. In liver cells, relative adduct labeling(RAL) $\times$ 10$^{12}$ of DCB-DNA adduct A1 were 34.1$\pm$3.71 and 69.9$\pm$5.02, that of adduct A2 were 74.1$\pm$10.1 and 105.1$\pm$10.1 on 10 and 14 days after treatment, respectively. And in bladder epithelia cells, RAL $\times$ 10$^{12}$ of DCB-DNA adduct A1 were 5.92$\pm$1.60 and 15.9$\pm$1.31, that of adduct A2 were 9,81$\pm$2.81 and 22.8$\pm$1.79 on 10 and 14 days after treatment, respectively. DCB metabolites formed DNA adducts were monoacetyl-dichlorobenzidine(acDCB) and diacety1-dichlorobenzidine(di-acDCB), which was identify by gas chromatography/mass spectrometry-scan ionization mode(GC/MS-SIM), along with hydrolysis, extraction and TFA(trifluoroacetyl anhyride) derivatization with DCB-DNA adducts isolated from live cells and bladder epithelial cells. The base peak of acDCB were 252 and 294 m/z, and that of di-acDCB were 252, 294 and 336 m/z. In conclusion, the exposed DCB formed two kinds of DCB-DNA adduct, the proximate materials of that were acDCB and di-acDCB in liver and bladder epithlial cells. And the above GC/MS-SIM method was found the DCB-DNA adducts could be monitoring by gas chromatography.

  • PDF

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권4호
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

Lossless Compression for Hyperspectral Images based on Adaptive Band Selection and Adaptive Predictor Selection

  • Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3295-3311
    • /
    • 2020
  • With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.

안와 전산화단층촬영검사 시 수정체 선량감소 방법과 영상 평가 (Lens Dose Reduction Methods and Image Quality in Orbital Computed Tomography Scan)

  • 문세영;홍상우;서지숙;김영범;곽완신;이성영;김정수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제43권5호
    • /
    • pp.343-351
    • /
    • 2020
  • This study analyzed dose reduction and quality of images through dose reduction tools and shielding board to protect sensitive eye lens in radiation during orbit CT examinations for clinical data use. During CT scans of the phantom, surface dose (CT scanner dosimetry phantom, ion chamber-3 times) and quality of image (radiosurgery head phantom, visual assessment-2 times, HU standard deviation) were evaluated using X-care which is dose reduction tools and bismuth shielding board. The results of experiments of eight conditions showed a relatively reduced dose in all other conditions compared to when no conditions were set. In particular, the area corresponding to the ophthalmic part reduced the surface dose by up to 45.7 %. The visual evaluation of images by specialists and the quality evaluation of images analyzed by HU standard deviation were clinically closest to the use of X-care and shielding board (1 cm in height). Therefore, it is believed that the use of shielding board in a suitable location with dose reduction tools while investigating the optimal radiation dose will reduce the exposure dose of sensitive lens at radiation while maintaining the quality of the images with high diagnostic value.

방사선원 3차원 위치탐지를 위한 방사선 영상장치 개발 (Development of Three-Dimensional Gamma-ray Camera)

  • 이남호;황영관;박순용
    • 한국정보통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.486-492
    • /
    • 2015
  • 방사선 영상장치는 방사능 누출사고의 조기처리 및 확산 피해 최소화에 필수적인 장비이며, 가까운 미래에 빅마켓으로 성장될 원전폐로 분야에서도 중요한 역할을 담당할 것으로 예상된다. 현재까지 개발된 방사선 영상장치는 방사선 오염원의 위치를 방향 정보만으로 탐지하여 가시화하고 있고 방사선원의 거리 측정은 불가능한 실정이다. 본 논문에서는 스테레오 카메라 원리를 적용하여 방사선원의 3차원 위치정보를 추출할 수 있는 새로운 기법의 방사선 3차원 영상장치의 구현에 대해 연구하였다. 한 대의 방사선 센서와 CCD 카메라, 그리고 팬틸의 컴팩트한 구성으로 설계된 방사선 3차원 영상장치(K3-RIS)는 위치변환 제어에 의한 스테레오 방사선 영상 취득과 연속모드 제어 및 고속 스테레오 영상정보처리 기능이 특징이다. 개발한 장치의 기능검증을 위해 감마 방사선원(Cs-137)을 대상으로 실험을 수행한 결과 선원간의 거리와 무관하게 3% 이하의 거리측정 오차를 확인하였다.

Blunt Trauma Pancreas in Children: Is Non-Operative Management Appropriate for All Grades?

  • Garg, Ravi Kumar;Mahajan, Jai Kumar
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제20권4호
    • /
    • pp.252-258
    • /
    • 2017
  • Purpose: Blunt trauma of pancreas in children is uncommon and its management varies from observational to early operative intervention. We analysed the feasibility and outcome of non-operative management in all grades of paediatric pancreatic injuries. Methods: A total of 15 patients of pancreatic trauma seen in a Paediatric Surgery Unit were retrospectively analyzed. Results: Age of the patients ranged from 3-11 years (mean, 7.7 years). The mode of injury was local trauma in 9 children. Only 3 patients had associated injuries and all were haemodynamically stable. Serum amylase levels were raised in 12 patients at admission which ranged from 400-1,000 IU. Computed tomography scan made a correct diagnosis in 14 patients. Grades of the injury varied from grade I-V (1, 3, 6, 4, 1 patients respectively). Fourteen patients were managed conservatively. One patient underwent laparotomy for suspected superior mesenteric hematoma. The average duration of enteral feeds was 3.7 days and of hospital stay was 9.4 days. Six patients formed pancreatic pseudocysts; two were managed conservatively while the other four underwent cystogastrostomy. The patients were followed up for a period of 1-12 years. All remained asymptomatic and none had exocrine or endocrine deficiencies. Conclusion: Non-operative treatment for isolated blunt trauma of pancreas in children may be safely followed for all the grades of injury; if associated injuries requiring surgical intervention are ruled out with a good quality imaging and the patients are hemodynamically stable. It did not increase the hospital stay and morbidity and avoided operative intervention on acutely injured pancreas.

딥러닝을 활용한 3차원 초음파 파노라마 영상 복원 (3D Ultrasound Panoramic Image Reconstruction using Deep Learning)

  • 이시열;김선호;이동언;박춘수;김민우
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권4호
    • /
    • pp.255-263
    • /
    • 2023
  • Clinical ultrasound (US) is a widely used imaging modality with various clinical applications. However, capturing a large field of view often requires specialized transducers which have limitations for specific clinical scenarios. Panoramic imaging offers an alternative approach by sequentially aligning image sections acquired from freehand sweeps using a standard transducer. To reconstruct a 3D volume from these 2D sections, an external device can be employed to track the transducer's motion accurately. However, the presence of optical or electrical interferences in a clinical setting often leads to incorrect measurements from such sensors. In this paper, we propose a deep learning (DL) framework that enables the prediction of scan trajectories using only US data, eliminating the need for an external tracking device. Our approach incorporates diverse data types, including correlation volume, optical flow, B-mode images, and rawer data (IQ data). We develop a DL network capable of effectively handling these data types and introduce an attention technique to emphasize crucial local areas for precise trajectory prediction. Through extensive experimentation, we demonstrate the superiority of our proposed method over other DL-based approaches in terms of long trajectory prediction performance. Our findings highlight the potential of employing DL techniques for trajectory estimation in clinical ultrasound, offering a promising alternative for panoramic imaging.