• Title/Summary/Keyword: scaled test

Search Result 700, Processing Time 0.036 seconds

Dynamic Characteristic of Truss Type Lift Gate by Model Tests (모형실험에 의한 트러스형 리프트 게이트의 진동 특성)

  • Lee, Seong Haeng;Shin, Dong Wook;Kim, Kyoung Nam;Jung, Kyoung Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.337-345
    • /
    • 2012
  • A model test is performed to investigate the dynamic behavior of truss type lift gate which is being constructed by the four major rivers project. The gate dimensioned 40 m in width, 9m in height is scaled with the ratio of 1:25 and is made of acryl panel and supplemented weight by lead in the concrete test flume dimensioned 1.2 m in width, 0.5 m in height and 30m in length. Firstly natural frequencies of the model gate are measured and compared with the numerical results for the calibration. The amplitudes of the vibration are measured under the different gate opening, upstream water level conditions. Also models with bottom angle $20^{\circ}$, $35^{\circ}$ and $50^{\circ}$ are tested and compared to find out a proper shape of bottom structure which minimizes the gate vibration. These test results presents a basic data for the guide manuals of gate management and a design method to reduce the gate vibration of truss type lift gate.

An Experimental Study of Squeal Noise Characteristics for Railway Using a Scale Model Test Rig (축소 모델 실험장치를 이용한 철도 스킬소음의 특성에 대한 실험적 연구)

  • Kim, Jiyong;Hwang, Donghyeon;Lee, Junheon;Kim, Kwanju;Kim, Jaechul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.5
    • /
    • pp.352-360
    • /
    • 2015
  • Squeal noise is a harsh, high-pitched sound that occurs when railways are running at sharp curve tracks. The cause of squeal noise is known to be the transient lateral traction force between wheel and rail. Field measurements are too difficult to control the parameters. Thus, the scaled test rig should have been made in order to investigate the generating mechanism of squeal noise. The unique feature of our test rig, HSTR(Hongik Squeal Testing Rig), is that DOFs of its wheelset are as close to as those of the real railway. The attack angle and running speed of the rail roller are controlled in real time for simulating a transient characteristic of driving curve. The environment conditions, such as given axle load, running speed, and wheel's yaw angle have been identified for generating squeal noise and the squeal noise itself has been measured. The relation between wheel creepage and creep force in lateral direction and the criteria for squeal noise have been investigated, which results has been verified by finite element method.

Experimental study on the effect of exhaust ventilation by shafts for case of fire in long traffic tunnels (장대 교통터널 화재시 수직갱의 배연효과에 관한 실험적 연구)

  • Yoo, Yong-ho;Yoon, Chan-hoon;Yoon, Sung-wook;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 2005
  • The objective of this study was to analyze the smoke movement and to investigate the effect of exhaust ventilation using by shafts for case of fire in long tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was constructed by acrylic tubes and test were carried out systematically. The results of the shaft height test show that the effect on exhaust ventilation by a shaft delays the propagation time of backlayering, and the temperature decreases as the shaft height increases. If the fire occurs downstream of the shaft, the backlayering develops to get stronger by the shaft exhaust effect and then the propagation of CO and temperature increase along with propagation of CO. That is to say, in the case of fire downstream of the shaft, the shaft has the advantage of smoke exhaust effects, but it might result in a dangerous situation for the escaping passengers due to the more developed backlayering.

  • PDF

An Experimental Study on Wake Flow-Field of NREL 5 MW Wind Turbine Model (NREL 5 MW 풍력터빈 모형의 후류 유동장에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.2
    • /
    • pp.85-91
    • /
    • 2017
  • A wind tunnel test for 1/86 scaled down model of the NREL 5 MW offshore wind turbine was conducted to investigate the wake and flow fields. Deficit of flow speed in the wake region and variations of the turbulence intensity were measured using a hot wire anemometer at rated tip speed ratio of 11.4 m/s and a rotational speed of 1,045 rpm. According to the test results, velocity deficits along both of lateral and vertical directions were recovered within 2 rotor radii downstream from the rotating disc plane. The tip vortices effect was negligible after 5 rotor radii downstream from the rotating plane. Turbulence intensities showed maximum value around the blade tip, and decreased rapidly after one radius apart from the rotating plane, and those values were preserved until 6 rotor radii downstream.

An Experimental Study for the Performance Analysis of a Vertical-type Wind Power Generation System with a Cross-flow Wind Turbine (횡류형 터빈을 적용한 수직축 풍력발전시스템의 성능평가를 위한 실험 연구)

  • Cho, Hyun-Sung;Chung, Kwang-Seop;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1272-1278
    • /
    • 2014
  • In this experimental study for the current growing offshore wind, a wind tunnel test was conducted to examine the performance of the vertical-type cross-flow wind turbine power generation system. Due to the limited size of the test section of the wind tunnel, the inlet guide vane of the original wind power generation was scaled down to about 1/5 and the turbine impeller diameter was also reduced to 1/2 of the prototype impeller. The number of the impeller blade is another important parameter to the output power of the wind power generation system and the number was varied 8 and 16. From the analysis of the experimental result, the output brake power of the model wind turbine was measured as 278watts with the 16-blade at 12 m/s of the rated wind speed and the rated brake power of the prototype wind turbine is calculated to 3.9kW at the rated operating condition.

The Estimation of Soil Conversion Factor Using Digital Photogrammetry (수치사진측량기법을 이용한 토량환산계수 산정)

  • Kim Jin Soo;Seo Dong Su;Lee Jong Chool
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.339-347
    • /
    • 2004
  • This study aims at calculating the exact soil conversion factor of cutting and banking areas of weathering rocks in large-scaled construction sites where land is being developed into home lots. For this, we have excavated the respective 20 sites of the cutting and banking areas in the said site and then calculated the volume after the excavation. As a result, the relative accuracy of the difference was calculated at 0.5% in average. We have calculated the exact soil conversion factor by the use of function ratio as per the wet unit weight and the indoor soil quality test as per volume calculated. And then we have found out minor differences as a result of the comparison and analysis with soil conversion factor determined by the dry unit weight test as per sand replacement method. This may be judged as a rational design method for the calculation of soil conversion factor, as well as high reliability of site test as a precision photogrammetry is adopted for volume measurement of the irregular excavating areas.

Scaling Methods for Icing Wind Tunnel Test (결빙 풍동시험을 위한 스케일링 기법 연구)

  • An, Young-Gab;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.146-156
    • /
    • 2012
  • In-flight icing remains as one of the most persistent hazards for aircraft operations. The effect of icing on aircraft performance and safety has to be evaluated during the development and airworthiness certification process. The scaling method is a procedure to determine the scaled test conditions in icing wind tunnels in order to produce the same result as when the reference model is exposed to the desired cloud conditions. In this study, a scaling program is developed to provide an easy-to-use tool to the aero-icing community. The Olsen and Ruff 4th methods are employed for this purpose and the velocity is calculated by matching the dimensionless Weber number. To validate the program, the results are compared with the NASA scaling results. The scaling examples based on FAR (Federal Aviation Regulation) Part 25 Appendix C are also presented. Finally, a validation study using a state-of-the-art icing simulation code FENSAP-ICE is presented.

The Reduced Model Test for the Determination of Ventilation Velocity to Prevent Backflow in Uni-directional Road Tunnel during a Fire Disaster (일방향 도로터널내 화재 발생시 역류를 막는 환기속도결정에 관한 축소모형실험)

  • 유영일;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • In the case of a fire disaster in a uni-directional road tunnel, it is important to determine the critical ventilation velocity to prevent the backflow travelling toward the tunnel exit where vehicles are stopped. The critical ventilation velocity is horizontal velocity to prevent hot smoke from moving toward the tunnel exit. According to Froude modelling, the model tunnel whcih was 300mm in diameter and 21 m in length was made of acryl tubes. Inner section of acryl tubes was clothed with polycarbonate. 1/20 scaled model vehicles were installed to simulate the situation that vehicles are stopped in the tunnel exit. Methanol in a pool type burner was burned in the middle of tunnel to simulate a fire hazard. In this study, the basis of determining the critical ventilation velocity is the ventilation flow rate that is able to maintain the allowable CO concentration in the tunnel section. We assumed that the allowable CO concentration was backflow dispersion index. Futhermore, We intended to find out CO distribution and temperature distribution according as we changed ventilation velocity. The results of this study were that no backflow happened when ventilation velocity was 0.52 m/s in the case of 5.75 kW. If we adapt these results of a fire disaster releasing 10MW heat capacity in real tunnel which is 400m in length, no backflow happens when ventilation velocity is 2.31m/s. After we figured out dimensionless heat release rate and dimensionless ventilation velocity of model test and those of real test to verify experimental correctness, we tried to find out correlation between experimental results of model tunnel and those of real tunnel.

  • PDF

Study of a Model Turbine Design Case Via Application of Spiral Case and Draft Tube Shape in Hydraulic Power Plant Modernization (수력 현대화 개·대체 시 스파이럴 케이스와 흡출관 형상에 따른 모델수차 설계 적용사례 연구)

  • Park, Nohyun;Kim, Jin-Hyuk;Kim, Seung-Jun;Hyun, Jungjae;Choi, Jongwoong;Cho, Yong
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.35-46
    • /
    • 2020
  • Recently, turbines operating in hydro power plants are required to undergo renovation and modernization due to their age exceeding 30 years. In the process of renovation or modernization, a performance test of the scaled-down model is necessary to verify the performance of the real-size model. This model test method, with criteria that is similar to that of a real turbine, is the most economical and important method. Furthermore, the shapes of the runner and guide vane can be modified or replaced easily. However, during the process of modernization, the components with the spiral casing and draft tube are impossible to repair or replace because of the buried ground. Thus, in this study, numerical analysis is conducted to investigate the hydraulic performance based on the difference between the two-dimensional computer-aided design (CAD) shape and the real three-dimensional scan shape of the spiral casing and draft tube.

An Experimental Investigation of the Aeroelastic Stability of Next-Generation Blade for Helicopter (헬리콥터용 차세대 블레이드의 공력탄성학적 안정성에 관한 시험적 연구)

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Seung-Ho;Lee, Je-Dong;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.680-685
    • /
    • 2006
  • This paper describes the aeroelastic stability test of the small-scaled 'Next-Generation Blade(NRSB)' with NRSH (Next-Generation Hub System) and HCTH hingeless hub system in hover and forward flight conditions. Excitation tests of rotor system installed in GSRTS(General Small-scale Rotor Test System) at KARI(Korea Aerospace Research Institute) were tarried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. First, NRSB-1F blades with HCTH hub system, Then NRSB-1F with NRSH hub system were tested. Second, NRSB-2F blades with NRSH hub system were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Non-rotating natural frequencies, non-rotating damping ratios and rotating natural frequencies were showed similar level fir each cases. Estimated damping ratios of NRSB-1F, NRSB-2F with HCTH and NRSH were above 0.5%, and damping ratio increased by collective pitch angle increasement. Furthermore damping ratios of NRSB-2F were higher than damping ratios of NRSB-1F in high pitch angle. It was confirmed that the blade design for noise reduction would give observable improvement in aeroelastic stability compared to paddle blade and NRSB-1F design.

  • PDF