• Title/Summary/Keyword: scale-model

Search Result 8,442, Processing Time 0.042 seconds

A Study on the Geomorphologic Synthesis of Hydrologic Response (수문응답의 지형학적 합성방법에 관한 연구)

  • Cho, Hong Je;Lee, Sang Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.99-108
    • /
    • 1990
  • A Synthetic Unit Hydrograph Method was investigated for representation of the effective rainfall-direct runoff hydrograph by using a Geomorphologic Instantaneous Unit Hydrograpb(GIUH) proposed by Gupta et al(1980). The response function of the basin was assumed to be the two-parameter gamma probability density function. The physical parameters of the response function(Nash Model) was determined by using the regression eqs. were parameterized in terms of Horton order ratios and the relations between the basin lag time and time-scale parameter. The capability of the Synthetic Unit Hydrograph to the real basin was tested for the Pyungchang river basin and Wi Stream basin, and its capability to reproduce the hydrologic response was investigate and compared with the Moment Method and the Least Square Method used incomplete gamma function. The representation of the peak flow, the time to peak and the hydrographs the derived Synthetic Unit Hydrograph were tested on some obseved flood data and showed promising, and it was approved to be used for prediction of the ungaged basins.

  • PDF

A Study of Female Farmers' Experiences and Needs in Educational Program Participation (여성농업인의 교육참여 경험과 교육요구도에 관한 연구)

  • 박공주;김경미;이정화;성윤숙;이길순
    • The Korean Journal of Community Living Science
    • /
    • v.15 no.2
    • /
    • pp.29-42
    • /
    • 2004
  • Women are unlikely to receive an equal education, compared to men, in rural Korean society despite the equality in labor sharing. To address this issue this research aims to (a) analyze the educational needs for farming skills and daily life management in rural communities, and (b) develop a model for educational programs reflecting regional characteristics for the female farmers in order to make them experts in agriculture. A structured questionnaire was administered, using a group interview method, to 366 female farmers from the Jeonnam, Chungbuk, and Gyeonggi provinces with help of agricultural agents. The major components of the questionnaire dealt with individual peculiarities, educational environment, and curriculum and training subjects wanted by the female farmers. Educational program content was classified as daily life management, scientific farming and agricultural management skills to create systematic and effective programs. It was found that the critical factors for developing educational programs for the female farmers are as follows: a. It is necessary to develop a program combining daily life management skills and farming skills to make the female farmers experts in agriculture. b. Statistically significant differences were found in the female farmers' educational program participation and needs based educational level, age, educational expenditure, farm type, farming experience, and farm scale. Therefore, it is necessary to develop a program considering the fore-mentioned socioeconomic status and farming characteristics. c. It is important to establish an educational system for the female farmer to improve their quality of life as a minority group in Korean society. In addition, it is also necessary to develop public relations program to ensure that female farmers recognize the importance and necessity of the education.

  • PDF

A Study on the Hydraulic Characteristics in a Compound Channel (복단면(複斷面) 수로(水路)에서의 수리학적(水理學的) 특성(特性)에 관한 연구(研究))

  • Jeong, Dong Guk;Ahn, Soo Hahn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.25-33
    • /
    • 1986
  • Natural river channels usually have a deep section and one or two floodplains, which is called a compound channel. As the general method in the compound channel overestimates the discharge capacity, the momentum transfer due to interaction between the main channel flow and flow over its floodplain must be considered. Scale model experiments are performed for the rectangular main channel with an asymmetrical floodplain. Firstly, velocities are measured at various section grids. Secondary, boundary shear stresses are calculated from velocity distributions. Lastly, in order to determine the apparent shear force, the shear stress distributions are integrated along the wetted perimeter for the full cross-section and equated to the total weight force in the flow direction. The hydraulic characteristics in a compound channel are closely examined with the scales of length, velocity, boundary shear stress, and apparent shear force which are described with the various relationships.

  • PDF

Dynamic Characteristics and Piezoelectric Effect of Energy Harvesting Block Structures with Different Shapes (다양한 형상 변화에 따른 에너지 수확용 블록 구조의 동적 특성 및 압전 효과)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.379-387
    • /
    • 2012
  • This study investigates free vibration characteristics of new energy harvesting multi-layer block structures with different geometrical shapes using solid and shell finite elements and evaluate their piezoelectric effect on experiments. The two and three-dimensional finite element (FE) delamination models for block structures described in this paper is attractive not only because it shows excellent accuracy in analysis but also it shows the entire vibration mode shape. The FE model using ABAQUS is used for studying free vibrations of multi-layer block structures for various tip mass and PZT. In particular, new results reported in this paper are focused on the significant effects of the global and local vibration modes for various parameters, such as size of block shape, existence of tip mass and hole, and location of tip mass and PZT. In addition, we evaluate the power generation capacity of developed energy block structures through a laboratory-scale experiment.

Determination of Lead in Urine by Atomic Absorption Spectrophotometry (원자흡광법을 이용한 요중 연 배설량의 정량)

  • Paik, Nam-Won;Yoon, Bock-Sang;Chung, Kyou-Chull
    • Journal of Preventive Medicine and Public Health
    • /
    • v.7 no.2
    • /
    • pp.377-381
    • /
    • 1974
  • Determination of lead in urine is important in industrial hygiene and toxicology. Dithizone method has been principally used for the determination of lead in urine, which gives accurate results in skilful hands but is usually complex and time-consuming. Atomic absorption spectrophotometry is a new simple method and several procedures have been described. However, the influences of pH and the presence of chelating agents during treatment of lead poisoning are not clear. The purpose of this study was to find out the effect of pH and chelating agents on the determination of lead using Shimadzu atomic absorption/flame spectrophotometer, model AA-610. The results obtained were as follows: 1. The atomic absorption spectrophotometry(AAS) could be applied without prior acid digestion to specimens in the absence of chelating agents. The absorbance at $2,170\;{\AA}$, though more sensitive, was more noisy electronically. Therefore, we selected the wavelength of $2,833\;{\AA}$ plus scale expansion. 2. The optimal pH was in the range from 2 to 3. 3. The sensitivity was $0.075{\mu}g/ml/%$ and detection limit was about $0.2{\mu}g/ml$. 4. In the presence of EDTA, lead could not be completely determined without prior acid digestion. 5. On specimens from patients receiving penicillamine therapy, a comparison was made between the values obtained with dithizone method and AAS method with prior acid digestion. The results of comparison showed a very good agreement.

  • PDF

HAT Tidal Current Turbine Design and Performance Test with Variable Loads (조류발전용 수평축 터빈의 형상설계 및 가변 부하를 이용한 성능실험)

  • Jo, Chul-Hee;Rho, Yu-Ho;Lee, Kang-Hee
    • New & Renewable Energy
    • /
    • v.8 no.1
    • /
    • pp.44-51
    • /
    • 2012
  • Due to a high tidal range of up to 10 m on the west coast of Korea, numerous tidal current projects are being planned and constructed. The turbine, which initially converts the tidal energy, is an important component because it affects the efficiency of the entire system. Its performance is determined by design variables such as the number of blades, the shape of foils, and the size of a hub. To design a turbine that can extract the maximum power on the site, the depth and duration of current velocity with respect to direction should be considered. Verifying the performance of a designed turbine is important, and requires a circulating water channel (CWC) facility. A physical model for the performance test of the turbine should be carefully designed and compared to results from computational fluid dynamics (CFD) analysis. In this study, a horizontal axis tidal current turbine is designed based on the blade element theory. The proposed turbine's performance is evaluated using both CFD and a CWC experiment. The sealing system, power train, measuring devices, and generator are arranged in a nacelle, and the complete TCP system is demonstrated in a laboratory scale.

A Study on the Performance Evaluation Method of the Spatial Information Network based on GIS (인터넷 기반의 공간정보유통망 성능분석 방법에 관한 연구)

  • Jin, Heui-Chae;Si, Jong-Yik
    • Journal of Korea Spatial Information System Society
    • /
    • v.1 no.1 s.1
    • /
    • pp.29-37
    • /
    • 1999
  • Recently, brisk up the construction of the spatial information, many people highly concern to tile information circulation of GIS. Each system like GIS has a structure of the information circulation to itself. In this paper, we study on the performance evaluation method of tile structure which to circulate tile spatial information based on the internet. To do this, we hypothesize values of content and scale of the geo-spatial information on each internet network and volumes of the information to circulate between internet networks. Then we suggest a method to evaluate the performance of the structure to aid the circulation of spatial information based on queueing model. Henceforth, with the volumes of data stored and circulated information of each GIS, this method can help to design the structure to circulate the GIS information more efficiently.

  • PDF

Prediction Performance of FDS on the Carbon Monoxide Production in the Under-Ventilated Fires (환기부족 화재에서 일산화탄소 발생에 대한 FDS의 예측성능)

  • Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.93-99
    • /
    • 2011
  • In the present study, a numerical simulation was conducted to estimate the prediction performance of FDS on the carbon monoxide production in the under-ventilated compartment fires. Methane and heptane fires located in the a 2/5 scale compartment based on the ISO-9705 standard room was simulated using FDS Ver. 5.5. Through the comparison between the computed results and the earlier published experimental data, the performance of FDS was estimated on the predictions of the combustion gases concentration in the hot upper layer of the compartment and the effects of CO yield rate on the estimation of CO production at local points were analyzed. From the results, it was known that FDS Ver. 5.5, in which the two-step reaction mixture fraction model implemented, was more effective on the prediction of CO concentration compared to the previous FDS version. In addition, controlling CO yield rate made the predicted CO concentration get closer to the experimental data for the fires of the under-ventilated condition.

Application of Geographical Information System on Golf Course Design for Reduction of Environmental Impacts (지형정보시스템기법을 이용한 친환경적 골프코스 설계)

  • Joo, Young-Kyoo;Lee, Whal-Hee;Lee, Mu-Chun
    • Asian Journal of Turfgrass Science
    • /
    • v.20 no.1
    • /
    • pp.93-105
    • /
    • 2006
  • The construction of golf courses has had adverse effects on the natural landscape and delicate ecosystem of Korea. Efficiency in planning and design was necessary to minimize the environmental impact of the original construction. However, the ordinal design methods have limited the data processing by the massive scale of the project of golf course development. Conventional design methods did not have a proper tool for alternative plans on pre-estimation of landscape destruction or minimizing of the environmental impact. Therefore, advanced computerized techniques need to be adapted for golf course design to solve the problems concerning the environmental impacts. Geographic information system (GIS) was applied on the process of geographical data input and analysis through the final outputs. Simulation works by the total database management enable the pre-investigation of the design In view of an assessment of environmental impacts. It is also possible to evaluate plans easily and propose the alternatives properly. Precise quantity calculation of engineering works by computer system should be guaranteed scientific, economic, and environmentally-sound.

Grouting compactness monitoring of concrete-filled steel tube arch bridge model using piezoceramic-based transducers

  • Feng, Qian;Kong, Qingzhao;Tan, Jie;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.175-180
    • /
    • 2017
  • The load-carrying capacity and structural behavior of concrete-filled steel tube (CFST) structures is highly influenced by the grouting compactness in the steel tube. Due to the invisibility of the grout in the steel tube, monitoring of the grouting progress in such a structure is still a challenge. This paper develops an active sensing approach with combined piezoceramic-based smart aggregates (SA) and piezoceramic patches to monitor the grouting compactness of CFST bridge structure. A small-scale steel specimen was designed and fabricated to simulate CFST bridge structure in this research. Before casting, four SAs and two piezoceramic patches were installed in the pre-determined locations of the specimen. In the active sensing approach, selected SAs were utilized as actuators to generate designed stress waves, which were detected by other SAs or piezoceramic patch sensors. Since concrete functions as a wave conduit, the stress wave response can be only detected when the wave path between the actuator and the sensor is filled with concrete. For the sake of monitoring the grouting progress, the steel tube specimen was grouted in four stages, and each stage held three days for cement drying. Experimental results show that the received sensor signals in time domain clearly indicate the change of the signal amplitude before and after the wave path is filled with concrete. Further, a wavelet packet-based energy index matrix (WPEIM) was developed to compute signal energy of the received signals. The computed signal energies of the sensors shown in the WPEIM demonstrate the feasibility of the proposed method in the monitoring of the grouting progress.