• Title/Summary/Keyword: scale-model

Search Result 8,442, Processing Time 0.035 seconds

Registration between High-resolution Optical and SAR Images Using linear Features (선형정보를 이용한 고해상도 광학영상과 SAR 영상 간 기하보정)

  • Han, You-Kyung;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.141-150
    • /
    • 2011
  • Precise image-to-image registration is required to process multi-sensor data together. The purpose of this paper is to develop an algorithm that register between high-resolution optical and SAR images using linear features. As a pre-processing step, initial alignment was fulfilled using manually selected tie points to remove any dislocations caused by scale difference, rotation, and translation of images. Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on their similarity. Outliers having larger geometric differences than general matching points were eliminated. The remaining points were used to construct a new transformation model, which was combined the piecewise linear function with the global affine transformation, and applied to increase the accuracy of geometric correction.

Effect of carbon substrate on the intracellular fluxes in succinic acid producing Escherichia coli.

  • Hong, Soon-Ho;Lee, Dong-Yup;Kim, Tae-Yong;Lee, Sang-Yup;Park, Sun-Won
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.251-257
    • /
    • 2003
  • Metabolic engineering has become a new paradigm for the more efficient production of desired bioproducts. Metabolic engineering can be defined as directed modification of cellular metabolism and properties through the introduction, deletion, and modification of metabolic pathways by using recombinant DNA and other molecular biological tools. During the last decade, metabolic flux analysis(MFA) has become an essential tool fur metabolic engineering. By MFA, the intracellular metabolic fluxes can be quantified by the measurement of extracellular metabolite concentrations in combination with the stoichiometry of intracellular reactions and mass balances. The usefulness and functionality of MFA are demonstrated by applying to metabolic pathways in E. coli. First, a large-scale in silico E. coli model is constructed, and then the effects of carbon sources on intracellular flux distributions and succinic acid production were investigated on the basis of the uptake and secretion rates of the relevant metabolites. The results indicated that succinic acid yields increased in order of gluconate, glucose and sorbitol. Acetic acid and lactic acid were produced as major products rather than when gluconate and glucose were used carbon sources. The results indicated that among three carbon sources available, the most reduced substrate is sorbitol which yields efficient succinic acid production.

  • PDF

Investigation on the Size Effects of Polycrystalline Metallic Materials in Microscale Deformation Processes (미세성형 공정에서 다결정 금속재료의 크기효과에 관한 연구)

  • Kim, Hong-Seok;Lee, Yong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1463-1470
    • /
    • 2010
  • Microforming, which exploits the advantages of metal forming technology, appears very promising in manufacturing microparts since it enables the production of parts using various materials at a high production rate, it has high material utilization efficiency, and it facilitates the production of parts with excellent mechanical properties. However, the conventional macroscale forming process cannot be simply scaled down to the micro-scale process on the basis of the extensive results and know-how on the macroscale process. This is because a so-called "size effect" occurs as the part size decreases to the microscale. In this paper, we attempt to develop an effective analytical and experimental modeling technique for explaining the effects of the grain size and the specimen size on the behavior of metals in microscale deformation processes. Copper sheet specimens of different thicknesses were prepared and heat-treated to obtain various grain sizes for the experiments. Tensile tests were conducted to investigate the influence of specimen thickness and grain size on the flow stress of the material. In addition, an analytical model was developed on the basis of phenomenological experimental findings to quantify the effects of the grain size and the specimen size on the flow stress of the material in microscale and macroscale forming.

The Development of behavior Characteristics Scale in the Mathematically Giftedness of the Middle School (수학 영재를 위한 행동 특성 검사도구 개발)

  • Hwang, Dong-Jou
    • Journal of the Korean School Mathematics Society
    • /
    • v.9 no.3
    • /
    • pp.405-424
    • /
    • 2006
  • The purpose of this study was to develop the instruments which can measure behavior characteristics as a component of Mathematically Giftedness with in middle school period. This study prescribed the variable factors of measurement after classify the characteristics of Mathematically Giftedness through literature studies. And it produced instruments those are finally composed of 51 items through the preliminary test. The participants for the study were 424 Korean middle school students. Statistical analyses were carried out to verify the validities and reliability. Reliability(Cronbach $\alpha$) was in behavior characteristics, .95. Content validity was found to be satisfactory by internal validity evaluation on the test items. Internal validity were analyzed by BIGSTEPTS based on Rasch's 1-parameter item-response model. Construct validity was also found to be satisfactory through factor analysis which showed the four factors which the identification instruments were intended to measure such as, General mathematical mental ability, Mathematical Ability, Processing and Obtaining mathematical information Anility and Mathematical Disposition Ability. In conclusion, the instruments about behavior characteristics of Mathematically Giftedness during middle school period developed by this study are highly reliable on its reliability and validity.

  • PDF

Study on Environmental Risk Assessment for Potential Effect of Genetically Modified Nicotiana benthamiana Expressing ZGMMV Coat Protein Gene

  • Kim, Tae-Sung;Yu, Min-Su;Koh, Kong-Suk;Oh, Kyoung-Hee;Ahn, Hong-Il;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 2006
  • Transgenic Nicotiana benthamiana plants harboring the coat protein(CP) gene of Zucchini green mottle mosaic virus(ZGMMV) were chosen as a model host for the environmental risk assessment of genetically modified plants with virus resistance. This study was focused on whether new virus type may arise during serial inoculation of one point CP mutant of ZGMMV on the transgenic plants. In vitro transcripts derived from the non-functional CP mutant were inoculated onto the virus-tolerant and -susceptible transgenic N. benthamiana plants. Any notable viral symptoms that could arise on the inoculated transgenic host plants were not detected, even though the inoculation experiment was repeated a total of ten times. This result suggests that potential risk associated with the CP-expressiing transgenic plants may not be significant. However, cautions must be taken as it does not guarantee environmental safety of these CP-mediated virus-resistant plants, considering the limited number of the transgenic plants tested in this study. Further study at a larger scale is needed to evaluate the environmental risk that might be associated with the CP-mediated virus resistant plant.

A Study on the Evaluation of Power Performance according to Temperature Characteristics of Amorphous Transparent Thin-Film (비정질 박막 투과형 태양전지모듈의 온도특성에 따른 발전성능 평가 연구)

  • An, Young-Sub;Song, Jong-hwa;Lee, Sung-jin;Yoon, Jong-ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.45-48
    • /
    • 2009
  • This study evaluated the influence of temperature on the PV module surface on power output characteristics, especially for an amorphous transparent thin-film PV module which was applied to a full-scale mock-up model as building integrated photovoltaic system. The tested mock-up consisted of various slopes of PV module, facing to the south. The annual average temperature of the module installed with the slope of $30^{\circ}$ revealed $43.1^{\circ}C$, resulting in $7^{\circ}C$ higher than that measured in PV modules with the slope of $0^{\circ}$and $90^{\circ}$ did. This $30^{\circ}$ inclined PV module also showed the highest power output of 28.5W (measured at 2 PM) than other two modules having the power output of 20.4W and 14.9W in the same time for $0^{\circ}$ and $90^{\circ}$ in the slope, respectively. In case of the $30^{\circ}$ inclined PV module, it exhibited very uniform distribution of power output generation even under the higher temperature on the module surface. Consequently, the surface temperature of the PV module analyzed in this study resulted in 0.22% reduction in power output in every $1^{\circ}C$ increase of the module surface temperature.

  • PDF

Assessment of Structural Modeling Refinements on Aeroelastic Stability of Composite Hingeless Rotor Blades (구조 모델링 특성에 따른 복합재료 무힌지 로터의 공력 탄성학적 안정성 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Chang-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • The aeroelastic stability analysis of a soft-in-plane, composite hingeless rotor blade in hover and in forward flight has been performed by combining the mixed beam method and the aeroelastic analysis system that is based on a moderate deflection beam approach. The aerodynamic forces and moments acting on the blade are obtained using the Leishman-Beddoes unsteady aerodynamic model. Hamilton's principle is used to derive the governing equations of composite helicopter blades undergoing extension, lag and flap bending, and torsion deflections. The influence of key structural modeling issues on the aeroelastic stability behavior of helicopter blades is studied. The issues include the shell wall thickness, elastic couplings and the correct treatment of constitutive assumptions in the section wall of the blade. It is found that the structural modeling effects are largely dependent on the layup geometries adopted in the section of the blade and these affect on the stability behavior in a large scale.

Dispersion Analysis of Surface Discharged Heat Water In Shallow Coastal Area (천해역에서의 표층온배수 확산해석)

  • 서승원;김덕호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.4
    • /
    • pp.340-345
    • /
    • 1995
  • Dispersion characteristics of surface discharge heat water in shallow region are investigated for coastal power plant with nearly constant depth of 20 meters by observing the seasonal depthwide temperature in several stations, which give or precise horizontal distribution and vertical structure of heat water. Surface discharged heat water in shallow coast in the Yellow Sea relies mainly on ambient tidal flow. so it behaves as free jet when the ambient now is strong and shows plumelike behavior during stagnant tide. According to observation the neat field region is estimated as 200-300 meters and shows distinct vertical profile and exponentially decreasing pattern from discharge point for this region. But there are no remarkable vertical distortion of temperature beyond 800 meters even though it is discharged from surface. Characteristic length scale model, CORMIX3, is applied and compared with the field date Overall tendency of CORMIX3 results resemble well with field data especially in near field and intermediate region.

  • PDF

Development of Cationic Dyeable Polyamide Substrates by Pretreatment with Synthetic Tanning Agent: Statistical Optimization and Analysis

  • Son, Young-A;Ravikumar, K.;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.41-50
    • /
    • 2009
  • Design of experiments (DoE) concept was successfully applied to determine the optimum processing conditions that yield maximum % exhaustion for berberine interaction with synthetic tanning agent pretreated polyamide substrates. The potential of synthetic tanning agent to provide anionic sites on the polyamide for berberine interaction which is cationic in nature was tested to increase the % exhaustion of berberine in this article. Experiments were designed according to Central Composite Rotatable Design (CCRD). The three factors for synthetic tanning agent pretreatment and two factors for berberine interaction each at five different levels, including central and axial points were considered. Experiments were conducted in a laboratory scale infra-red treatment instrument according to CCRD. For each response, second order polynomial models were developed using multiple linear regression analysis incorporating linear, interactions and squared effects of all variables and then optimized. The significance of the mathematical model developed was ascertained using Excel regression (solver) analysis module. Analysis of variance (ANOVA) was performed to check the adequacy and accuracy of the fitted models. The response surfaces and contour maps showing the interaction of process variables were constructed. Applying Monte Carlo simulation, response surface and contour plots, optimum operating conditions were found and at this optimum point, % exhaustion of 81% and 74% respectively for synthetic tanning agent pretreatment and berberine interaction were observed and subsequently the results were experimentally investigated.

The Experimental Study on Mass Nail Reinforcing Effects with Variation of Water Content (함수비 변화에 따른 Mass Nail 공법의 사면 보강 효과에 관한 실험적 연구)

  • Kwon, Kyoung-Jun;Kim, Won-Il;Hong, Chang-Sun;Ahn, Won-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.109-116
    • /
    • 2010
  • Infiltration and the rising level of groundwater caused by rainfall are a major cause of the landslide and sliding. In order to secure the safety factor of slope, the slope stabilization and reinforcement works are used to enhance consistency. Nailing, Slope Drainage method and the surface vegetation measures can be simultaneously applied in the Mass Nail method, which is also environmental friendly reinforcement method. To demonstrate the reinforcement effect of a strengthened slope by Mass Nail, the changes in water contents by rainfall were considered while performing Scale Model Test. As a result, safety factor of reinforced slope was about 1.4~2.3 times increased on the unstrength slope. In the case of increasing water content 10% to 22%, The maximum stress was reduced to 12%~24% at the average rate of 18% on the unstrength slope and the reinforced slope by the Mass Nail Method was reduced to 4%~23% at the average rate of 14%.