DOI QR코드

DOI QR Code

Registration between High-resolution Optical and SAR Images Using linear Features

선형정보를 이용한 고해상도 광학영상과 SAR 영상 간 기하보정

  • Han, You-Kyung (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Duk-Jin (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Yong-Il (Department of Civil and Environmental Engineering, Seoul National University)
  • 한유경 (서울대학교 공과대학 건설환경공학부) ;
  • 김덕진 (서울대학교 지구환경과학부) ;
  • 김용일 (서울대학교 공과대학 건설환경공학부)
  • Received : 2011.02.01
  • Accepted : 2011.04.22
  • Published : 2011.04.30

Abstract

Precise image-to-image registration is required to process multi-sensor data together. The purpose of this paper is to develop an algorithm that register between high-resolution optical and SAR images using linear features. As a pre-processing step, initial alignment was fulfilled using manually selected tie points to remove any dislocations caused by scale difference, rotation, and translation of images. Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on their similarity. Outliers having larger geometric differences than general matching points were eliminated. The remaining points were used to construct a new transformation model, which was combined the piecewise linear function with the global affine transformation, and applied to increase the accuracy of geometric correction.

다중센서자료를 동시에 활용하기 위해서는 센서 간의 정밀한 기하보정이 요구된다. 이에 본 연구에서는 선형정보를 추출하여 고해상도의 광학영상과 SAR 영상 간의 기하보정을 수행하는 것을 목적으로 한다. 이를 위해 기준영상과 대상영상에 대하여 수동으로 매칭쌍을 추출하여 두 영상 간의 좌표체계를 개략적으로 일치시켜주는 과정을 전처리로 수행하였다. 방사적 특성이 다른 두 영상에 대하여 Canny edge operator를 통해 선형 화소를 추출한 뒤, 비용함수를 구성하여 유사하다고 생각되는 점을 초기 매칭쌍으로 선정하고, 그 중에서 이상치로 판단되는 오매칭쌍을 제거하고 남은 대상을 최종 매칭쌍으로 추출하였다. 본 기법을 통해 영상 전역에 걸쳐서 고르게 분포된 다수의 매칭쌍을 추출할 수 있었을 뿐만 아니라, 고도가 높거나 고도 변화가 큰 지역적 특성으로 인해 지리적 위치오차를 포함하는 지역에서 추출된 매칭쌍을 효과적으로 제거할 수 있었다. 최종적으로 추출된 매칭쌍을 이용하여 piecewise linear function과 affine transformation을 결합한 새로운 변환모델식을 적용하여 기하보정 정확도를 높이고자 하였고, 수동으로 추출된 검사점을 통해 1.58의 RMSE 값을 도출하였다.

Keywords

References

  1. Arevalo, V. and J. Gonzalez, 2008. An experimental evaluation of non-rigid registration techniques on Quickbird satellite imagery, International Journal of Remote Sensing, 29(2): 513-527. https://doi.org/10.1080/01431160701241910
  2. Canny, J., 1986. A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679-698.
  3. Dare, P. and I. Dowman, 2000. Automatic registration of SAR and SPOT imagery based on multiple feature extraction and matching, Proc. IEEE 2000, pp. 2896-2898.
  4. Dare, P. and I. Dowman, 2001. An improved model for automatic feature-based registration of SAR and SPOT images, Journal of Photogrammetry & Remote Sensing, 56(1): 13-28. https://doi.org/10.1016/S0924-2716(01)00031-4
  5. Goshtasby, A., 1986. Piecewise linear mapping functions for image registration, Pattern Recognition, 19(6): 459-466. https://doi.org/10.1016/0031-3203(86)90044-0
  6. Habib, A. and R. Al-ruzouq, 2005. Semi-automatic registration of multi-source satellite imagery with varying geometric resolutions, Photogrammetric Engineering & Remote Sensing, 71(3): 325-332. https://doi.org/10.14358/PERS.71.3.325
  7. Hong, T. and A. Schowengerdt, 2005. A robust technique for precise registration of radar and optical satellite images, Photogrammetric Engineering & Remote Sensing, 71(5): 585-593. https://doi.org/10.14358/PERS.71.5.585
  8. Huang, L. and Z. Li, 2010. Feature-based image registration using the shape context, International Journal of Remote Sensing, 31(8): 2169-2177. https://doi.org/10.1080/01431161003621585
  9. Lee, J. S., 1980. Digital image enhancement and noise filtering by use of local statistics, IEEE Pattern Analysis and Machine Intelligence, 2(2): 165-168.
  10. Newton, W., C. Gurney, D. Sloggett, and I. Dowman, 1995. An approach to the automated identification of forests and forest change in remotely sensed images, International Archives of Photogrammetry and Remote Sensing, 30(3): 607-614.
  11. Suri, S. and P. Reinartz, 2010. Mutual-informationbased registration of TerraSAR-X and Ikonos imagery in urban area, IEEE Transactions on Geoscience and Remote Sensing, 48(2): 939-949. https://doi.org/10.1109/TGRS.2009.2034842
  12. Zitova, B. and J. Flusser, 2003. Image registration methods: a survey, Image and Vision Computing, 21(11): 977-1000. https://doi.org/10.1016/S0262-8856(03)00137-9
  13. Zou, X. L., H. B. Ma, and C. H. Ge, 2003. Featurebased multi-resolution SAR and TM images auto-registration, Proc. IEEE 2003, International Conference on Robotics, Intelligent Systems and Signal Processing, Changsha, China, pp. 1278-1282.

Cited by

  1. 이상치 제거와 삼각망 기반의 지역 변환을 이용한 영상 등록 vol.30, pp.6, 2011, https://doi.org/10.7780/kjrs.2014.30.6.9
  2. Automated Coregistration of Multisensor Orthophotos Generated from Unmanned Aerial Vehicle Platforms vol.2019, pp.None, 2011, https://doi.org/10.1155/2019/2962734