• 제목/요약/키워드: savonius rotor

검색결과 15건 처리시간 0.02초

사보니우스 풍력 터빈의 효율 향상을 위한 연구 (A Study for Improving the Performance of Savonius Wind Turbine)

  • 홍철현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권2호
    • /
    • pp.258-263
    • /
    • 2011
  • 본 연구는 국내 풍향 조건에 적합한 사보니우스 풍력 터빈의 개발과 효율향상을 위한 기초설계 자료를 얻고자 한다. 이를 위해 1/4 윈드실드가 부착된 풍력 터빈 주변의 유동장 특성을 수치해석으로 확인하였고, 터빈 로터의 회전수를 수치해석과 실험을 통하여 측정하였다. 측정결과 수치해석결과와 실험결과의 경향이 일치하였고, 윈드실드가 부착된 경우의 회전수가 약 70% 이상 향상됨을 확인하였다.

사보니우스형 조류발전 터빈의 설계 및 회류수조 실험을 통한 성능평가 (Design and Performance Test of Savonius Tidal Current Turbine with CWC)

  • 조철희;이준호;노유호;고광오;이강희
    • 한국해양공학회지
    • /
    • 제26권4호
    • /
    • pp.37-41
    • /
    • 2012
  • Due to global warming, the need to secure alternative resources has become more important nationally. Because of the very strong current on the west coast, with a tidal range of up to 10 m, there are many suitable sites for the application of TCP (tidal current power) in Korea. In the southwest region, a strong current is created in the narrow channels between the numerous islands. A rotor is an essential component that can convert tidal current energy into rotational energy to generate electricity. The design optimization of a rotor is very important to maximize the power production. The performance of a rotor can be determined using various parameters, including the number of blades, shape, sectional size, diameter, etc. There are many offshore jetties and piers with high current velocities. Thus, a VAT (vertical axis turbine) system, which can generate power regardless of flow direction changes, could be effectively applied to cylindrical structures. A VAT system could give an advantage to a caisson-type breakwater because it allows water to circulate well. This paper introduces a multi-layer vertical axis tidal current power system. A Savonius turbine was designed, and a performance analysis was carried out using CFD. A physical model was also demonstrated in CWC, and the results are compared with CFD.

항력식 조류발전 터빈의 최적 형상 설계 및 유동 수치해석을 통한 성능 평가 (Design and Performance Evaluation of the Savonius Tidal Current Turbine)

  • 조철희;고광오;이준호;이강희
    • 신재생에너지
    • /
    • 제8권2호
    • /
    • pp.6-13
    • /
    • 2012
  • Due to global warming, the need to secure an alternative resource has become more important nationally. Having very strong current on the west coast with up to 10 m tidal range, there are many suitable site for the application of TCP (Tidal Current Power) in Korea. On the south west regions between many islands that create strong current in the narrow channels. The rotor is one of the essential components which can convert tidal current energy into rotational energy to generate electricity. The design optimization of rotor is very important to maximize the power production. The performance of rotor can be determined by various parameters including number of blades, shape, sectional size, diameters and etc. This paper introduces the multi-layer vertical axis tidal current power system which can be applied to offshore jetties and piers effectively. Various cases of VAT turbine were designed. Specifically, the number of blades and turbine shape are changed in several cases. Also, performance analysis was carried out by CFD.

Performance Analysis of a savonius type direct drive turbine for wave energy conversion

  • Zullah, Mohammed Asid;Prasad, Deepak Divashkar;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.237.2-237.2
    • /
    • 2010
  • Although oscillating water column type wave energy devices are nearing the stage of commercial exploitation, there is still much to be learnt about many facets of their hydrodynamic performance. The techniques of Computational Fluid Dynamics (CFD) are applied to simulate a wave energy conversion device in free surface such as waves. This research uses the commercially available ANSYS CFX computational fluid dynamics flow solver to model a complete oscillating water column system with savonius turbine incorporated at the rear bottom of the OWC chamber in a three dimensional numerical wave tank. The purpose of the present study is to investigate the effect of an average wave condition on the performance and internal flow of a newly developed direct drive turbine (DDT) model for wave energy conversion numerically. The effects of blade angle and front lip shape on the hydrodynamic efficiency are investigated. The results indicated that the developed models are suitable to analyze the water flow characteristics both in the chamber and in the turbine. For the turbine, the numerical results of torque were compared for the all cases. The results of the testing have also illustrated that simple changes to the front wall aperture shape can provide marked improvements in the efficiency of energy capture for OWC type devices.

  • PDF

고효율 소형 수직형 풍력터빈의 공력성능에 관한 실험적 연구 (An Experimental Study on the Aerodynamic Performance of High-efficient, Small-scale, Vertical-axis Wind Turbine)

  • 박준용;이명재;이승진;이승배
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.580-588
    • /
    • 2009
  • This paper summarizes the experimentally-measured performance of small-scale, vertical-axis wind turbine for the purpose of improving the aerodynamic efficiency and its controllability. The turbine is designed to have a Savonius-Type rotor with an inlet guide-vane and an side guide-vane so that it achieves a higher efficiency than any lift- or drag-based turbines. The main design factors for this high-efficient, vertical wind turbine are the number of blades (Z), and the aspect ratio of Height/Diameter (H/D) among many. The basic model has the diameter of 580mm, the height of 464mm, and the blade number of 10. The maximum power coefficient of 0.50 was experimentally measured for the above-mentioned specifications. The inlet-guide vane ensures the maximum efficiency when the angle of attack to the rotor blade lies between $15^{\circ}$ and $20^{\circ}$. This experimental results for the vertical-axis wind turbine can be applied to the preliminary design of turbine output curve based on the wind characteristics at the proposed site by controlling its aerodynamic performance given as a priori.