• Title/Summary/Keyword: saturation effect

Search Result 1,034, Processing Time 0.027 seconds

The Effect and the Limitation of Driven-right-leg Ground on Indirect-contact ECG measurement (간접접촉 심전도 측정에서의 오른발구동 접지의 효과와 한계)

  • Lim, Yong Gyu
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.103-108
    • /
    • 2018
  • This study reviews the common-mode noise model of indirect-contact ECG measurement which uses capacitive electrode and capacitive ground, and shows the reason of the large common-mode noise in indirect-contact ECG. And then, this study shows driven-right-leg ground in indirect-contact ECG measurement, and reviews how the driven-right-leg ground reduces the common-mode noise. This study then analyzes the relation between the effective area of the indirect-contact ground and the gain of the driven-right-leg circuit. This study introduces the output voltage saturation of the driven-right-leg circuit, which occurs frequently in indirect-contact ECG measurement with the condition of the high ground impedance. This study then shows the effect of the driven-right-leg circuit saturation on the common-mode noise.

Design and Analysis of Interior Permanent Magnet Synchronous Motor Considering Saturated Rotor Bridge using Equivalent Magnetic Circuit

  • Shin, Kyung-Hun;Yu, Ju-Seong;Choi, Jang-Young;Cho, Han-Wook
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.404-410
    • /
    • 2014
  • This paper considers the design and performance evaluation of interior permanent magnet synchronous motors (IPMSMs). The initial design such as the sizing and shape design of the stator and rotor is performed for a given load condition. In particular, the equivalent magnetic circuit (EMC) is employed both to design the mechanical parameters of the rotor while considering nonlinear magnetic saturation effect and to analyze the magnetic characteristics of the air-gap of the motor. The designed motor is manufactured and tested to confirm the validity of the design processes and simulated results.

Analytical Thermal Noise Model of Deep-submicron MOSFETs

  • Shin, Hyung-Cheol;Kim, Se-Young;Jeon, Jong-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.206-209
    • /
    • 2006
  • This paper presents an analytical noise model for the drain thermal noise, the induced gate noise, and their correlation coefficient in deep-submicron MOSFETs, which is valid in both linear region and saturation region. The impedance field method was used to calculate the external drain thermal noise current. The effect of channel length modulation was included in the analytical equation. The noise behavior of MOSFETs with decreasing channel length was successfully predicted from our model.

A unified capacitance model of GaAs MESFET (GaAs MESFET의 통합 커패시턴스 모델)

  • 이상흥;송호준;이기준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.158-163
    • /
    • 1996
  • In the conventional GaAs MESFET circuit simulation, the DC and transient simulation results are often failed due to the discontrinuities of the first and second order derivatives arising from the use of separate C-V models in linear, satruration, and transition regions. In this paper, we propose a unified capacitance model for linear, transition, and saturation regions by using a unified channel length modulation effect that is derived by extending the channel length modulation effect in the saturation region to the linear region. Calculated resutls from the proposed capacitance model agree well with 2-D device simulation resutls. Thus, the proposed model is expected to be useful in circuit simulation.

  • PDF

The Effect of Some Physical Parameters on Saturation and Velocity Profiles in a Porous Medium

  • Ghyym S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.120-125
    • /
    • 1997
  • In the present work the influence of various physical parameters on the two-phase flow behavior in a self-heated porous medium has been studied using a numerical model, that is, the effects of heat generation rate, of porosity, of particle size, and of system pressure on the dryout process. To analyze the effect of these parameters, the variation of both liquid volumetric fraction (i.e., liquid saturation) and liquid axial velocity is evaluated at the steady state or at the onset of a first boiled-out region. The analysis of computational results indicate that a qualitative tendency exists between the parameters such as heat generation rate, porosity, effective particle diameter and the temporal development of the liquid volumetric fraction field up to dryout. In addition to these parameters, a variation of fluid properties such as phase density, phase viscosity due to a change of system pressure can be used for gaining insight into the nature of two-phase flow behavior up to dryout.

  • PDF

The Effect of Thicknesses on Magnetic Properties of Fe-Hf-N Soft Magnetic Thin Films (Fe-Hf-N 연자성 박막의 자기적 특성에 미치는 박막 두께의 영향)

  • Choi, Jong-Won;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.255-259
    • /
    • 2011
  • The thickness dependence of magnetic properties was experimentally investigated in nanocrystalline Fe-Hf-N thin films fabricated by a RF magnetron sputtering method. In order to investigate the thickness effect on their magnetic properties, the films are prepared with different thickness ranges from 90 nm to 330 nm. It was revealed that the coercivity of the thin film increased with film thickness. On the contrary, the saturation magnetization decreased with film thickness. On the basis of the SEM and TEM, an amorphous phase forms during initial growth stage and it changes to crystalline structure after heat treatment at $550^{\circ}C$. Nanocrystalline Fe-Hf-N particles are also generated.

Calculation of Topographic Index with Geographic Information System

  • Kim, Sang-Hyun;Ham, Kun-Yeun
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.85-95
    • /
    • 1997
  • The multiple flow direction algorithm to calculate the spatial variation of the saturation tendency, I. e. topographic index, is integrated into the Geographic Information System, GRASS. A procedure is suggested to consider the effect of a tile system on calculating the topographic index. A small agricultural subwatershed ($3.4\;\textrm{km}^2$) is used for this study. The impact of a tile system on the groundwater table can be effectively considered by the Laplace's equation to the DEM. The analysis shows that a tile system has a high degree of saturation to compared to the case without tile drainage, and the predicted riparian area is well fitted to the actual watershed condition. A procedure is suggested to consider a tile system's effect on calculating the topographic index.

  • PDF

Transient Simulation Studies of Squirrel-Cage Induction Motor Directly Supplied with Aircraft Variable Frequency Power

  • Du, Xiaofei;Wang, Deqiang;Zhou, Yuanjun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Aircraft variable frequency power and a new application of induction motor under the aero-power are introduced. The transient models and simulation of induction motor are reviewed. A new transient model and simulation method is presented that includes deep-bar effect and magnetic saturation. Dynamic magnetizing inductance, rotor resistance and leakage reactance are considered as varying parameters in state-space model. Base on known rotor structure and speed, these parameters can be calculated.

MAGNETO-OPTICAL INVESTIGATION OF LOW-DEMENSIONAL MAGNETIC STRUCTURES

  • Shalyguina, E.E.;Kim, Cheol-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.13-16
    • /
    • 2003
  • Magnetic and magneto-optical properties of Fe/Pt/Fe, Co/Pd/Co trilayers and also the sandwiches with wedge-shaped magnetic (Fe, Co) and nonmagnetic (Pt, Pd) layers were investigated. The oscillatory behavior of the saturation field $H_{s}$ of the studied trilayers with changing the thickness of the nonmagnetic layer (NML) $t_{NML}$ was revealed. That was explained by the exchange coupling between ferromagnetic layers (FML) through the nonmagnetic spacer. For the first time, oscillations of the transverse Kerr effect (TKE) with changing the Pt- and Pd-wedge thickness were discovered. Period of these oscillations was found to depend on the FML thickness and the photon energy of the incident light. TKE spectra of the examined samples were discovered to modify very strongly with increasing $t_{NML}$. The discovered peculiarities of magneto-optical properties of thin-film systems were explained by a concept of the spin-polarized quantum well states in the pt and Pd layers.

  • PDF

The Effect of Vibrationally Excited Levels on the Pressure Saturation of the Collisional Quenching of the $^3B_1\;State\;of\;SO_2

  • Bae, S. C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.56-60
    • /
    • 1996
  • The pressure saturation effect on the phosphorescence decay rates of the $^3B_1$ State of $SO_2$ has been reinvestigated by the laser induced phosphorescence method in pure $SO_2$. We have attempted to fit the pressure dependence of the phosphorescence decay rates using the radiationless transition model by introducing different coupling constants for each vibrational level ofthe 3B1 state. The experimental decay rates can be fitted well, when the coupling constants for the (0,0,0), (0,1,0) and (0,2,0) levels of the $^3B_1$ state are $7.2\;{\times}\;10^{-4}$, $2.2\;{\times}\;10^{-3}$ and $5.9\;{\times}\;10^{-3}\;cm^{-1}$, respectively.