• Title/Summary/Keyword: saturated data

Search Result 486, Processing Time 0.028 seconds

Nonlinear Scattering of Difference Frequency Acoustic Wave in Water-Saturated Sandy Sediment (수중 모래퇴적물에서 차주파수 음파의 비선형 산란)

  • Kim Byoung-Nam;Lee Kang Il;Yoon Suk Wang;Choi Bok Kyoung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.347-348
    • /
    • 2004
  • Nonlinear scattering of difference frequency acoustic wave in a water-saturated sandy sediment was investigated. Difference frequency acoustic wave was observed to be scattered due to the nonlinearity of water-saturated sandy sediment when the collinear acoustic waves with two different fundamental frequencies are incident on the sediment. The pressure level of the difference frequency acoustic wave was 6 dB higher than the background noise level. It seems very useful to evaluate the nonlinear parameter of water-saturated sandy sediment without disturbing the sediment. Such nonlinear acoustic response of water-saturated sandy sediment can be used as background acoustic data for estimating the gas void fraction in marine gassy sandy sedimen.

  • PDF

An Overall Investigation of Break Simulators for LOCA Scenarios in Integral Effect Tests

  • Kim, Yeon-Sik;Park, Hyun-Sik
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.73-88
    • /
    • 2014
  • Various studies on the critical flow models for sub-cooled and/or saturated water were reviewed, especially on Fauske, Moody, and Henry for basic theoretical models; Zaloudek for insight into physical phenomena for a critical flow in an orifice type flow path; Sozzi & Sutherland for a critical flow test of saturated and sub-cooled water at high pressure for orifice and nozzles; and a Marviken test on a full-scale critical flow test. In addition, critical flow tests of sub-cooled water for the break simulators in integral effect test (IET) facilities were also investigated, and a hybrid concept using Moody's and Fauske's models was considered by the authors. In the comparison of the models for the selected test data, discussions of the effect of the diameters, predictions of the critical flow models, and design aspects of break simulator for SBLOCA scenarios in the IET facilities were presented. In the effect of diameter on the critical flow rate with respect to all dimensional scales, it was concluded that the effect of diameter was found irrespective of diameter sizes. In addition, the diameter effect on slip ratio affecting the critical flow rate was suggested. From a comparison of the critical flow models and selected test data, the Henry-Fauske model of the MARS-KS code was found to be the best model predicting the critical flow rate for the selected test data under study.

Review on Pre-processing of Earthquake Data from KEPRI Seismic Monitoring System (전력연구원 지진관측자료의 사전자료처리 기법 및 효과적인 활용에 관한 고찰)

  • 연관희;박동희;최원학;장천중
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.39-50
    • /
    • 2002
  • Several pre-processing techniques for earthquake data from earthquake monitoring institutes in Korea including Korea Electric Power Research Institute are thoroughly reviewed. Among these techniques for removing an instrumental response, removing the non-causal ringing distortion by FIR filter, checking calibration status of seismic stations, and minimizing the window effect are introduced and applied to real data. It is also recommended that analysts evaluate S/N ratio in the frequency domain and consider the possibility of using the saturated earthquake data.

Best Use of the Measured Earthquake Data (지진관측자료의 효과적인 활용에 관한 고찰)

  • 연관희;박동희;김성주;최원학;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.36-43
    • /
    • 2001
  • In Korea, we are absolutely short of earthquake data in good quality from moderate and large earthquakes, which are needed fur the study of strong ground motion characteristics. This means that the best use of the available data is needed far the time being. In this respect, several methods are suggested in this paper, which can be applied in the process of data selection and analysis. First, it is shown that the calibration status of seismic stations can be easily checked by comparing the spectra from accelerometer and velocity sensor both of which are located at the same location. Secondly, it is recommended that S/N ratio in the frequency domain should be checked before discarding the data by only look of the data in time domain. Thirdly, the saturated earthquake data caused by ground motion level exceeding the detection limit of a seismograph are considered to see if such data can be used for spectrum analysis by performing numerical simulation. The result reveals that the saturated data can still be used within the dominant frequency range according to the levels of saturation. Finally, a technique to minimize the window effect that distorts the low frequency spectrum is suggested. This technique involves detrending in displacement domain once the displacement data are obtained by integration of low frequency components of the original data in time domain. Especially, the low frequency component can be separated by using discrete wavelet transform among many alternatives. All of these methods mentioned above may increase the available earthquake data and frequency range.

  • PDF

Coupled diffusion of multi-component chemicals in non-saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Xi, Yunping
    • Computers and Concrete
    • /
    • v.11 no.3
    • /
    • pp.201-222
    • /
    • 2013
  • A comprehensive simulation model for the transport process of fully coupled moisture and multi-species in non-saturated concrete structures is proposed. The governing equations of moisture and ion diffusion are formulated based on Fick's law and the Nernst-Planck equation, respectively. The governing equations are modified by explicitly including the coupling terms corresponding to the coupled mechanisms. The ionic interaction-induced electrostatic potential is described by electroneutrality condition. The model takes into account the two-way coupled effect of moisture diffusion and ion transport in concrete. The coupling parameters are evaluated based on the available experimental data and incorporated in the governing equations. Differing from previous researches, the material parameters related to moisture diffusion and ion transport in concrete are considered not to be constant numbers and characterized by the material models that account for the concrete mix design parameters and age of concrete. Then, the material models are included in the numerical analysis and the governing equations are solved by using finite element method. The numerical results obtained from the present model agree very well with available test data. Thus, the model can predict satisfactorily the ingress of deicing salts into non-saturated concrete.

Development Method of Early Warning Systems for Rainfall Induced Landslides (강우에 의한 돌발 산사태 예·경보 시스템 구축 방안)

  • Kim, Seong-Pil;Bong, Tae-Ho;Bae, Seung-Jong;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.135-141
    • /
    • 2015
  • The objective of this study is to develop an early warning system for rainfall induced landslides. For this study, we suggested an analysis process using rainfall forecast data. 1) For a selected slope, safety factor with saturated depth was analyzed and safety factor threshold was established (warning FS threshold=1.3, alarm FS threshold=1.1). 2) If rainfall started, saturated depth and safety factor was calculated with rainfall forecast data, 3) And every hour after safety factor is compared with threshold, then warning or alarm can issued. In the future, we plan to make a early warning system combined with the in-situ inclinometer sensors.

Saturated - Unsaturated Transient Subsurface Flow Model on a Hillslope

  • Choi, Eun-Ho;Nahm, Sun-Woo
    • Korean Journal of Hydrosciences
    • /
    • v.2
    • /
    • pp.13-24
    • /
    • 1991
  • The governing partial differential equation of flow in porous media is developed on the bases of the continuity equation of fluid for transient flow through a saturated-unsaturated zone, and substitution of Dercy's law. The numerical solution is obtained by the Galerkin finite element method based on the principle of weighted residuals. The analysis is carried out by using the unsteady storm data observed and the functional relationships between the hydraulic conductivities, capillary pressure heads, and volumetric water contents under saturated-unsaturated conditions. As the results the hydraulic conductivities, rates of change of storage and initial moisture conditions are significantly influened on the responses of subsurface flow on a hillslope.

  • PDF

Performance Comparison of Correlations of the Saturated Liquid Densities for Pure Substances (순수물질에 대한 포화액체밀도 상관식의 성능비교)

  • Lee, Kyoung-Youl;Park, Kyoung-Kuhn
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.373-379
    • /
    • 2005
  • A few correlation equations of the saturated liquid density are reviewed and a new equation is proposed. Performance of each equation is examined using the data listed in the ASHRAE table for 22 pure substance refrigerants. The new four-parameter equation yields an average absolute deviation of 0.03% for 22 refrigerants. Performance of the new four-parameter equation is found to be equivalent to those of the existing equations such as Hou-Martin equation(0.03%) and Iglesias-Silva-Hall equation(0.08%).

  • PDF

An Experimental Study on Heat Transfer Characteristics Just Before Critical Heat Flux in Uniformly Heated Vertical Annulus Under a Wide Range of Pressures

  • Chun, Se-Young;Moon, Sang-Ki;Chung, Heung-June;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.269-285
    • /
    • 2002
  • Water heat transfer experiments were carried out in a uniformly heated annulus with a wide range of pressure conditions. The local heat transfer coefficients for saturated water (low boiling have been measured just before the occurrence of the critical heat flux (CHF) along the length of the heated section. The trends of the measured heat transfer coefficients were quite different from the conventional understanding for the heat transfer of saturated flow boiling. This discrepancy was explained from the nucleate boiling in the liquid film of annular flow under high heat flux conditions. The well-known correlations were compared with the measured heat transfer coefficients. The Shah and Kandlikar correlations gave better prediction than the Chen correlation. However, the modified Chen correlation proposed in the present work showed the best agreement with the present data among correlations examined .

Study on the Single Bubble Growth During Nucleate Boiling at Saturated Pool (포화상태 풀비등시 단일기포의 성장에 관한 연구)

  • Kim Jeongbae;Lee Han Choon;Oh Byung Do;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.169-179
    • /
    • 2005
  • Nucleate boiling experiments on heating surface of constant wall temperature were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition of heating surface and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous experimental results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later (thermal) respectively. The comparisons showed good agreement in the initial and thermal growth regions. In the initial growth region including surface tension controlled, transition and inertia controlled regions as divided by Robinson and Judd, the bubble growth rate showed that the bubble radius was proportional to $t^{2/3}$ regardless of working fluids and heating conditions. And in the thermal growth region as also called asymptotic region, the bubble showed a growth rate that was proportional to $t^{1/5}$, also. Those growth rates were slower than the growth rates proposed in previous analytical analyses. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool condition. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).