• Title/Summary/Keyword: satellite ground station

Search Result 290, Processing Time 0.029 seconds

THE SELECTION OF GROUND STATIONS FOR IGS PRODUCTS (IGS 산출물 생성을 위한 지상국 선정에 관한 연구)

  • Jung, Sung-Wook;Baek, Jeong-Ho;Bae, Tae-Suk;Jo, Jung-Hyun;Cho, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.417-430
    • /
    • 2007
  • The selection of ground stations is one of the essential process of IGS (International GNSS Service) products. High quality GPS data should be collected from the globally distributed ground stations. In this study, we investigated an effect of ground station network selection on GPS satellite ephemeris. The GPS satellite ephemeris obtained from the twelve ground station networks were analyzed to investigate the effect of selection of ground stations. For data quality check, the observations, the number of cycle slips, and multipath of pseudoranges for L1 and L2 were considered. The ideal network defined by Taylor-Karman structure and SOD (Second Order Design) were used to obtain the optimal ground station network.

TC & R Communication Link Performance Analysis of Geostationary Satellite Employing PCM/PSK/PM on Super Synchronous Transfer Orbit (PCM/PSK/PM 방식을 사용하는 정지궤도 위성의 슈퍼 천이 궤도에서 S-Band TC & R 통신 링크 성능 분석)

  • Lee, Sun-Ik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1142-1155
    • /
    • 2014
  • The classical PCM/PSK/PM scheme has been commonly used for TC & R applications between satellites and ground stations in the S-band. We analyzed TC & R link performance between ground station and the geostationary satellite which employs PCM/PSK/PM, when the satellite are particularly on the Super Synchronous Transfer Orbit(SSTO). The satellite parameters on SSTO are assumed to be those operating on the geostationary orbit, considering heritage aspect. In the uplink, the results shown indicate that sufficient margins over 3 dB are obtained when the EIRP of ground station is greater than 65 dBW. The down link performance is of great interest. By adjusting the telemetry modulation index and ranging modulation index, we could obtain the required margin of 3.0 dB in the down link, and find out the minimum G/T of ground station. In conclusion, the previously operated ground stations during LEOP at COMS launch, can be operational when GEO injection is made using SSTO(65,000 km and 70,000 km).

Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station (위성항법 지상국 감시제어시스템 예비설계)

  • Jeong, Seong-Kyun;Lee, Jae-Eun;Park, Han-Earl;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.227-238
    • /
    • 2008
  • GNSS (Global Navigation Satellite System) Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute) is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language) method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.

Quality Monitoring Method Analysis for GNSS Ground Station Monitoring and Control Subsystem (위성항법 지상국 감시제어시스템 품질 감시 기법 분석)

  • Jeong, Seong-Kyun;Lee, Sang-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.11-18
    • /
    • 2010
  • GNSS(Global Navigation Satellite System) Ground Station performs GNSS signal acquisition and processing. This system generates error correction information and distributes them to GNSS users. GNSS Ground Station consists of sensor station which contains receiver and meteorological sensor, monitoring and control subsystem which monitors and controls sensor station, control center which generates error correction information, and uplink station which transmits correction information to navigation satellites. Monitoring and control subsystem acquires and processes navigation data from sensor station. The processed data is transmitted to GNSS control center. Monitoring and control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation determination module, independent quality monitoring module, and system maintenance and management module. The independent quality monitoring module inspects navigation signal, data, and measurement. This paper introduces independent quality monitoring and performs the analysis using measurement data.

Development of STSAT-2 Ground Station Baseband Control System (과학기술위성2호 지상관제를 위한 기저대역 제어 시스템 개발)

  • O, Seung-Han;O, Dae-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.110-115
    • /
    • 2006
  • STSAT-2 is the first satellite which will be launched by the first Korean Space Launch Vehicle(KSLV). Ground station Baseband Control system(GBC) is now developed for STSAT-2. GBC has two functions. One is control data path between satellite control computers and ground station antennas(1.5M, 3.7M, 13M) automatically. The other is sending and receiving data between ground station and satellite. GBC is implemented by FPGA(Field-Programmable Gate Array) which includes almost all logic(for MODEM, PROTOCOL and GBC system control). MODEM in GBC has two uplink FSK modulators(1.2[kbps], 9.6[kbps]) and six downlink FSK demodulators(9.6[kbps], 38.4[kbps]). In hardware, STSAT-2 GBC is smaller than STSAT-1 GBC. In function, STSAT-2 GBC has more features than STSAT-1 GBC. This paper is about GBC structure, functions and test results.

Conceptual Design of KASS Uplink Station (한국형 위성항법보강시스템(KASS) 위성통신국 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2017
  • The Satellite Based Augmentation System (SBAS) broadcasts to users integrity and correction information for Global Navigation Satellite System (GNSS) such as GPS and GLONASS using geostationary orbit (GEO) satellites. In accordance with the recommendation of the International Civilian Aeronautical Organization (ICAO) to introduce SBAS until 2025, a Korean SBAS system development / construction project is underway with the Ministry of Land, Transport and Maritime Affairs. Korea Augmentation Satellite System (KASS) is a high precision GPS correction system which is composed of KASS Reference Station (KRS), KASS Processing Station (KPS), KASS Uplink Station (KUS), KASS Control Station (KCS) and GEO satellites. In this paper, we provided the conceptual design of the KASS uplink station, which is composed of the Signal Generator Section (SGS) and the Radio-Frequency Section (RFS), and interface between the KASS ground sector and the GEO satellite.

Construction of Indoor Ground Station for Cubesat Communication Test (큐브위성 송수신시험을 위한 실내용 지상국 구축)

  • Han, Sanghyuck;Moon, Sangman;Shin, Dongyeop;Moon, SungTae;Gong, Hyeon Cheol;Choi, Gi-Hyuk
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • During developing cubesat flight software, Communication test between cubesat and ground station is needed. For this, we have constructed indoor ground station without outdoor antenna for decreasing total cost and time. In this time, if output power of ground station is high, it will affect for cubesat transceiver to be fail. For solving this problem, ground station must be designed for output power of it to be lower than input power of cubesat satellite, and it must be verified. In this paper, first, we describe cubesat indoor ground station using UHF and VHF. Second, we describe output power decreasing test for indoor operation of ground station by attaching attenuators in the end of the output connector.

A Conceptual Study of Positioning System for the Geostationary Satellite Autonomous Operation (정지궤도 위성의 자동운용을 위한 위치결정 시스템의 개념연구)

  • Lee, Sang-Cherl;Ju, Gwang-Hyeok;Kim, Bang-Yeop;Park, Bong-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.41-47
    • /
    • 2005
  • Even more than 240 commercial geostationary communication satellites currently on orbit at the higher location than the GPS orbit altitude perform their own missions only by the support of the ground segment because of weak visibility from GPS. In addition, the orbit determination accuracy is very low without using two or more dedicated ground tracking antennas in intercontinental ground segment, since the satellite hardly moves with respect to the ground station. In this paper, we propose the GSPS(Geostationary Satellite Positioning System) in circular orbits of two sidereal days period higher than the geosynchronous orbit for orbit determination and autonomous satellite operation. The GSPS is conceived as a ranging system in that unknown positions of a geostationary satellite can be acquired from the known positions of the GSPS satellites. Each GSPS satellite transmits navigation data, clock data, correction data, and geostationary satellite command to control a geostationary satellite.

COMS SYSTEM LEVEL RF COMPATIBILITY TEST SYNTHESIS

  • Lim, Hyun-Su;Park, Durk-Jong;Yang, Hyung-Mo;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.500-503
    • /
    • 2007
  • During the COMS system level test, the RF compatibility will be performed in order to verify that there is no issue in RF interface between satellite and COMS ground station, namely SOC (Satellite Operation Center) before the launch. As used for KOMPSAT1, the RF coaxial cable was chosen to be used to connect satellite and SOC with various advantages as compared with ground antennas. As the preparation step, RF cable and required multiplexer were tested in advance. This paper suggests the way for the RF compatibility tests between the satellite and the SOC over RF cable interface and presents the estimated level diagram as the signal power analysis result.

  • PDF

Interference analysis on Japanese radio source for KOMPSAT TT&C ground system

  • Park, Durk-Jong;Ahn, Sang-Il
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.2-36.2
    • /
    • 2008
  • This paper presents the impact of Japanese radio source on the S-Band communication between KOMPSAT-2 satellite and TT&C ground system. Major specifications such as transmitting EIRP (Effective Isotropic Radiated Power) and location of Japanese terrestrial station were informed from Radio Research Laboratory in Korea Communication Commission. To estimate path loss in S-Band, the distance between Japanese station and TT&C ground system was obtained by using COTS (Commercial Off-The-Shelf) software. After that the signal strength of Japanese radio source placed at the TT&C ground system was calculated from link parameters such as transmitting EIRP, path loss, and receiving antenna gain. Consequently, this paper shows that the degradation caused by Japanese radio source is acceptable to TT&C ground system for satellite operation.

  • PDF