DOI QR코드

DOI QR Code

TC & R Communication Link Performance Analysis of Geostationary Satellite Employing PCM/PSK/PM on Super Synchronous Transfer Orbit

PCM/PSK/PM 방식을 사용하는 정지궤도 위성의 슈퍼 천이 궤도에서 S-Band TC & R 통신 링크 성능 분석

  • Received : 2014.08.25
  • Accepted : 2014.10.08
  • Published : 2014.11.30

Abstract

The classical PCM/PSK/PM scheme has been commonly used for TC & R applications between satellites and ground stations in the S-band. We analyzed TC & R link performance between ground station and the geostationary satellite which employs PCM/PSK/PM, when the satellite are particularly on the Super Synchronous Transfer Orbit(SSTO). The satellite parameters on SSTO are assumed to be those operating on the geostationary orbit, considering heritage aspect. In the uplink, the results shown indicate that sufficient margins over 3 dB are obtained when the EIRP of ground station is greater than 65 dBW. The down link performance is of great interest. By adjusting the telemetry modulation index and ranging modulation index, we could obtain the required margin of 3.0 dB in the down link, and find out the minimum G/T of ground station. In conclusion, the previously operated ground stations during LEOP at COMS launch, can be operational when GEO injection is made using SSTO(65,000 km and 70,000 km).

PCM/PSK/PM 변조 방식은 위성과 지상국간 원격명령과 원격측정 및 거리측정(레인징)을 위하여 S-band 주파수 대역에서 널리 사용되어 왔다. 본 논문에서는 정지궤도 위성 발사에 활용되고 있는 슈퍼 천이 궤도에서 PCM/PSK/PM 방식을 적용하는 정지궤도 위성과 지상국간 TC & R(Telemetry, Command and Ranging) 링크 성능이 확보되는지를 연구하였다. 위성의 제원은 Heritage를 고려하여 기존 정지궤도 위성에서 운용되는 제원으로 설정하였다. 이 결과, 상향 링크에서는 EIRP가 65 dBW이면 3 dB 이상의 여유 마진이 확보되는 것을 확인하였다. 하향 링크에서는 원격측정과 레인지 변조 지수를 조정함으로써 요구 마진(3 dB)을 얻을 수 있었고, 이에 상응하는 지상국 최소 G/T 성능을 찾아볼 수 있었다. 원지점 고도가 65,000 km와 70,000 km인 슈퍼 천이 궤도를 이용한 정지 궤도 진입이 추진될 경우에는 천리안 위성을 발사할 때 초기에 이미 운용되었던 지상국의 활용이 가능한 것으로 분석된다.

Keywords

References

  1. 이선익, 김상구, 임원규, 김중표, 유상범, 이상곤, 염경환, "슈퍼 천이 궤도에서의 정지궤도위성 S-대역 원격 측정명령계 링크버짓 분석", 한국항공우주학회 춘계학술대회 2014, pp. 819-822, 2014년 4월.
  2. 김영완, 양우진, "통신해양기상위성의 위성 관제 신호 전송 방식의 최적화 연구", 한국항공우주학회지, 34 (11), pp. 47-53, 2006년 11월. https://doi.org/10.5139/JKSAS.2006.34.11.047
  3. R. Garcia, S. Marti, F. Schwartz, C. Bainier, and L. Martineau, "Compact TT&C equipment for small satellites", European Space Agency, TTC 2001, 2nd ESA Workshop on Tracking, Telemetry and Command Systems for Space Applications, Oct. 2001.
  4. W. L. Martin, T. M. Nguyen, "The joint CCSDS-SFCG modulation study-A comparison of modulation schemes", Jet Propulsion Laboratory, 1994.
  5. M. K. Simon, S. Million, "Residual versus suppressedcarrier coherent communications", Jet Propulsion Laboratory, TDA Progress Report 42-127, pp. 1-9, Nov. 1996.
  6. T. K. Foley, B. J. Gaumond, "Optimum power division for phase-modulated deep-space communication links", IEEE Trans. Aerospace and Electronic Systems, vol. AES-3, no. 3, pp. 400-409, May 1967. https://doi.org/10.1109/TAES.1967.5408803
  7. M. M. Shihabi, T. M. Nguyen, and S. M. Hinedi, "On the use of subcarriers in future space missions", Jet Propulsion Laboratory, California Institute of Technology, Apr. 1983.
  8. M. M. Shihabi, "A comparison of telemetry signals in the presence and absence of a subcarrier", IEEE Trans. Electromagnetic Compatibility, vol. 36, pp. 60-73, Feb. 1994. https://doi.org/10.1109/15.265481
  9. T. M. Nguyen, "A computational technique for the means and variances of modulation losses", Jet Propulsion Laboratory, TDA Progress Report 42-103, pp. 189-202, Nov. 1990.
  10. C. C. Wang, T. M. Nguyen, and J. Yoh, "On the power spectral density of SGLS and USB waveforms", 1999 IEEE Aerospace Conference, vol. 2, pp. 137-143, 1999.
  11. "Radio frequency and modulation systems-Part 1 earth station and spacecraft", Consultative Committee for Space Data Systems, CCSDS 401.0-B, pp. 1.0-3-1.0-4, pp. 2.2.2-1-2.2.2-2, pp. 2.2.7-1-2.2.7-2, pp. 4.1.5-1-4.1.5- 9, Jun. 1993.
  12. T. M. Nguyen, S. M. Hinedi, "Selection technique for subcarrier frequencies and modulation indices", IEEE Trans. Communications, vol. 43, no. 2/3/4/, pp. 1055-1066, Apr. 1995. https://doi.org/10.1109/26.380137
  13. P. W. Kinman, J. B. Berner, "Two-way ranging during early mission phase", 2003 IEEE Aerospace Conference, vol. 3, pp. 3_1445-3_1455, Mar. 2003.
  14. P. W. Kinman, "Sequential ranging", in DSN Telecommunications Link Design Handbook, Doc. 810-005, California Institute of Technology, Module 203B, pp. 18-21, Oct. 2009.
  15. D. M. Pozar, Microwave and RF Design of Wireless Systems, John Willey & Sons, New York, pp. 120-121, pp. 129-131, 2001.
  16. B. Sklar, Digital Communications Fundamentals and Application, Prentice-Hall International, pp. 215-223, 1988.
  17. G. D. Gordon, W. L. Morgan, Principles of Communications Satellites, Wiley & Sons, New York, pp. 38-50, pp. 214-231.
  18. H. Estep, "Polarization loss of a satellite: Data collection sensor link", IEEE Trans. Aerospace and Electronic Systems, vol. AES-13, pp. 433-435, Jul. 1977. https://doi.org/10.1109/TAES.1977.308486
  19. "Satellite Earth Stations and Systems(SES): Technical analysis of spread spectrum solutions for Telemetry, Command and Ranging(TCR) of geostationary communications satellite", European Telecommunications Standards Institute, ETSI TR 101 956 V1.1.1, p. 18, Sep. 2001.
  20. "Ranging standard, volume 1: Direct ground to spacecraft ranging", European Space Agency, ESA PSS-04-104, vol. 1, pp. 25-31, Mar. 1991.
  21. W. G. Lim, C. G. Noblejas, "Question for ISBT", Private e-mail, KARI, Nov. 2013.
  22. "TM/TC MODCS link budgets SYS-18", KARI, pp. 3-10, Jan. 2007.
  23. Y. Hwang, B. S. Lee, H. Y. Kim, H. Kim, and J. Kim, "Orbit determination accuracy improvement for geostationary satellite with single station antenna tracking data", ETRI Journal, vol. 30, pp. 774-782, Dec. 2008. https://doi.org/10.4218/etrij.08.0108.0152