• Title/Summary/Keyword: sapphire

Search Result 828, Processing Time 0.039 seconds

UV and visible emission intensity control of ZnO thin films for light emitting device applications (발광소자 응용을 위한 ZnO 박막의 자외선 및 가시광 발광 세기 제어)

  • Kang, Hong-Seong;Shim, Eun-Sub;Kang, Jeong-Seok;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.108-111
    • /
    • 2001
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition(PLD) technique for light emitting device applications. We have controlled the emission intensity of UV and visible light, depending on film thickness and various post-annealing time. UV emission became strong as the thickness of ZnO thin films increased. The intensity of visible light was strong as post-annealing temperature increased. The optical properties of the ZnO thin films were characterized by PL(photoluminescence) and the structural properties of the ZnO were characterized by XRD for the application of ZnO light emission device.

  • PDF

Correlation Between Deposition Parameters and Photoluminescence of ZnO Semiconducting Thin Films by Pulsed laser Deposition (PLD증착 변수에 따른 II-VI족 화합물 ZnO 반도체 박막의 발광 특성 연구)

  • 배상혁;윤일구;서대식;명재민;이상렬
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.246-250
    • /
    • 2001
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of355 nm. In order to investigate the emission properties of ZnO thin films, Pl measurements with an Ar ion laser a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited Pl bands centers around 390, 510 and 640 nm, labeled near ultra-violet(UV), green and orange bands. Structural properties of ZnO thin films are analyzed with X-ray diffraction(XRD).

  • PDF

Optical Properties of ZnO Films Grown by Pulsed Laser Deposition (펄스 레이저 증착법으로 성장된 ZnO 막의 광학 특성)

  • Cho, Shin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.113-114
    • /
    • 2005
  • We present the effect of substrate temperature on the structural and optical properties of ZnO films grown on sapphire substrate by pulsed laser deposition. Growing at higher substrate temperature results in an increase in the surface roughness. The optimum c-axis orientation of the ZnO films occurs at the substrate temperature of 700$^{\circ}C$ The decay time shows a rapid increase in the substrate temperature from 400$^{\circ}C$ to 500$^{\circ}C$ and falls down gradually as the substrate temperature is approached to 700$^{\circ}C$.

  • PDF

Terahertz Emission by LT-GaAs (LT-GaAs에서 테라헬쯔파 방출)

  • Cho, Shin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.78-79
    • /
    • 2005
  • We report on optically excited terahertz (THz) omission from low-temperature (LT) grown GaAs. We have used 70 fs titanium-sapphire laser pulses with wavelengths at 800 nm to generate THz radiation pulses. The LT-GaAs layers are grown on semi-insulating GaAs substrates with GaAs buffer layer by molecular beam epitaxy (MBE). The THz emission from the LT-GaAs surface is strong and does not show any significant variation in the strength of the THz emission over several different angles between the polarization of the excitation laser pulse and the crystallographic orientation of the LT-GaAs.

  • PDF

A Study on the frequency characteristic of ZnO Piezoelectric transducers (ZnO 압전변환기의 주파수특성에 관한 연구)

  • 정규원;이종덕;정광천;박상만;송준태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.189-192
    • /
    • 1996
  • In this paper ZnO Piezoelectric transducers were fabricated as follows, counter electrode (pt 99.9%) was deposited on the sapphire substrates by DC sputter method, and then piezoelectric layer (ZnO 99.999%) was deposited on the counter electrode according to the sputtering parameters, and then top electrode (pt 99.9%) was deposited on the piezoelectric layer by Electron Beam Gun Evaporator. Structural characteristic of deposited ZnO thin film was measured by XRD, SEM. Also, Frequency characteristic of ZnO transducer was analyzed theoretically and practically for input frequencies.

  • PDF

Vapor Phase Epitaxial Growth and Properties of GaN (GaN의 기상성장과 특성)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.72-75
    • /
    • 1996
  • A hydride vapor phase epitaxy (HVPE) method is performed to prepare the GaN thin films on c-plane sapphire substrate. The full-width at half maximum of double crystal X-ray rocking curves from 20$\mu\textrm{m}$-thick GaN was 576 arcsecond. The photoluminescence spectrum measured 10 K shows the hallow bound exciton (I$_2$) line and weak donor-acceptor peak, however, there was not observed deep donor-acceptor pair recombination indicate the GaN crystals prepared in this study are of high purity and high crystalline quality. The GaN layer is n-type conducting with electron mobility of 72 $\textrm{cm}^2$/V$.$sec and with carrier concentration of 6 x 10$\^$18/cm/sup-3/.

  • PDF

UV emission characterization of ZnO films depending on the variation of substrata temperature (기판온도에 변화에 따른 ZnO 박막의 UV 발광특성 연구)

  • Bae, Sang-Hyuck;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.888-890
    • /
    • 1999
  • ZnO thin films on (001) sapphire substrates have been deposited by pulsed laser deposition using a Nd:YAG laser with the wavelength of 355 nm at an oxygen pressure of 350 mTorr. In order to investigate the effect of the substrate temperature on the properties of ZnO thin films, the experiment has been performed at various substrate temperatures in the range of $200^{\circ}C$ to $700^{\circ}C$. According to XRD, (002) textured ZnO films of high crystalline quality have been obtained by pulsed laser deposition technique. However, the intensity of UV emission is mostly depending on the stoichiometry of ZnO films.

  • PDF

Optically Pumped Stimulated Emission from Column-III Nitride Semiconductors. (III족 질화물반도체의 광여기 유도방출)

  • 김선태;문동찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.50-53
    • /
    • 1994
  • In this study. we report the properties of optically pumped stimulated emission at room temperature (RT) from column-III nitride semiconductors of GaN, GaInN, AlGaN/GaN double hetero-structure (DH) and AlGaN/GaInN DH which grown by low pressure metal-organic vapor phase epitaxy on sapphire substrate using an AIN buffer-layer. The peak wavelength of the stimulated emission at RT from AlGaN/GaN DH is 370nm and the threshold of excitation pumping power density (P$\_$th/) is about 89㎾/$\textrm{cm}^2$, and they from AlGaN/GaInN DH are 403nm and 130㎾/$\textrm{cm}^2$, respectively. The P$\_$th/ of AlGaN/GaN and AlGaN/GaInN DHs are lower than the bulk materials due to optical confinement within the active layers of GaN and GaInN. The optical gain and the polarization of stimulated emission characteristics are presented in this article.

Characteristic of FS-laser ablation of metal thin film with respect to the variation of material and substrate (펨토초 레이저를 이용한 박막 재료 및 기판 변화에 따른 가공 특성에 관한 연구)

  • Kim B.H.;Shin H.G.;Lee J.G.;Jeong S.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.671-672
    • /
    • 2006
  • We have investigated the behavior of the ultrafast laser ablation of chromium films (200nm) on the silicon and pyrex-glass(corning 7740) substrate with respect to the laser fluence and the number of laser pulses. In addition, several experiments about ITO thin film were carried out with femto-second Ti:Sapphire laser (150fs). Finally, we introduce the ablation characteristic in accordance with materials of thin film and substrate.

  • PDF