• Title/Summary/Keyword: saponin of Red ginseng

Search Result 312, Processing Time 0.034 seconds

Optimization of Fermentation Condition for Red Ginseng Wine Using Response Surface Methodology. (반응표면분석을 이용한 홍삼주 발효조건 최적화)

  • Kim, Seong-Ho;Kang, Bok-Hee;Noh, Sang-Gyun;Kim, Jong-Guk;Lee, Sang-Han;Lee, Jin-Man
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.556-564
    • /
    • 2008
  • Response surface methodology was used to monitor the optimization of fermentation conditions for red ginseng wine. A central composite design was applied to investigate the effects of independent variables, fermentation temperature ($X_1$), fermentation time ($X_2$) and initial pH ($X_3$) on dependent variables, physicochemical characteristics and effective ingredients. Alcohol and total sugar content were significantly affected both by fermentation temperature and time. Crude saponin content was greatly affected by fermentation time, and pH was significantly affected by initial pH. Fermentation time and initial pH had a greater effect on ginsenoside content than fermentation temperature. Ginsenoside content increased along with fermentation time and initial pH. We elicited a regression formula for each variable, and superimposed the total optimum points of fermentation conditions for physicochemical characteristics and the effective constituents. The predicted values at the optimum fermentation conditions were at $21{\sim}27^{\circ}C$ for $15{\sim}20$ day in initial pH $4.6{\sim}5.2$.

Acute and repeated dose 26-week oral toxicity study of 20(S)-ginsenoside Rg3 in Kunming mice and Sprague-Dawley rats

  • Li, Chunmei;Wang, Zhezhe;Li, Guisheng;Wang, Zhenhua;Yang, Jianrong;Li, Yanshen;Wang, Hongtao;Jin, Haizhu;Qiao, Junhua;Wang, Hongbo;Tian, Jingwei;Lee, Albert W.;Gao, Yonglin
    • Journal of Ginseng Research
    • /
    • v.44 no.2
    • /
    • pp.222-228
    • /
    • 2020
  • Background: 20(S)-ginsenoside-Rg3 (C42H72O13), a natural triterpenoid saponin, is extracted from red ginseng. The increasing use of 20(S)-ginsenoside Rg3 has raised product safety concerns. Methods: In acute toxicity, 20(S)-ginsenoside Rg3 was singly and orally administrated to Kunming mice and Sprague-Dawley (SD) rats at the maximum doses of 1600 mg/kg and 800 mg/kg, respectively. In the 26-week toxicity study, we used repeated oral administration of 20(S)-ginsenoside Rg3 in SD rats over 26 weeks at doses of 0, 20, 60, or 180 mg/kg. Moreover, a 4-week recovery period was scheduled to observe the persistence, delayed occurrence, and reversibility of toxic effects. Results: The result of acute toxicity shows that oral administration of 20(S)-ginsenoside Rg3 to mice and rats did not induce mortality or toxicity up to 1600 and 800 mg/kg, respectively. During a 26-week administration period and a 4-week withdrawal period (recovery period), there were no significant differences in clinical signs, body weight, food consumption, urinalysis parameters, biochemical and hematological values, or histopathological findings. Conclusion: The mean oral lethal dose (LD50) of 20(S)-ginsenoside Rg3, in acute toxicity, is above 1600 mg/kg and 800 mg/kg in mice and rats, respectively. In a repeated-dose 26-week oral toxicity study, the no-observed-adverse-effect level for female and male SD rats was 180 mg/kg.

The Protective Effect of Orally Ingested Korean Red Ginseng on the Noise Induced Hearing Loss in Mice (마우스에서 고려 홍삼의 구강내 섭취를 통한 소음성 난청의 예방효과)

  • Ahn, Joong-Ho;Kim, Tae-Soo;Chung, Hana;Lee, Na-Young;Chung, Jong-Woo
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.104-110
    • /
    • 2009
  • It is well known that the saponin of Korean red ginseng (KRG) has an anti-oxidant effect and could suppress the accumulation of lipid peroxidation. The aim of the present study was to observe the inhibitory effect of KRG on mice with noise-induced hearing loss, and to determine its optimal dose. BALB/c mice with a normal hearing level and normal Preyer's reflexes were used in the study. The mice in the permanent-threshold-shift (PTS) group were exposed to noise (120-dB SPL, white noise band) in a noise booth for 3 h a day, for three consecutive days. The mice in the experimental group were given heat-processed red-ginseng extract (50 mg/kg, 100 mg/kg, and 200 mg/kg), and those in the control group were given normal saline alone during their noise exposure. The mice in the temporary-threshold-shift (TTS) group were exposed to noise (120 dBSPL, white noise band) in a noise booth for 3 h. The mice in the experimental group were given heat-processed red-ginseng extract (50 mg/kg, 100 mg/kg, and 200 mg/kg), and those in the control group were given normal saline alone before their noise exposure. The hearing levels of the mice were measured through auditory brainstem response (ABR) immediately and I, 3, 5, 7, and 14 days after their noise exposure. Cochleae were removed from the mice 14 days after their noise exposure. lmmunochemical and immunofluorescent staining were performed to observe the expression of 8-oxoG in cochlea. In the PTS group, the hearing function of the mice in all the groups was not recovered after their noise exposure. In the TTS group, however, the hearing function of the mice in all the groups was recovered within 14 days. Reduced hearing impairment and early recovery were observed in the mice that were given 200 mg/kg KRG, and early recovery was observed in the mice that were given 100 mg/kg KRG The immunopositive staining of 8-oxoG was detected in the stria vascularis in the control group but was diminished in the mice that were given 200 mg/kg KRG The ingestion of more than 100 mg/kg KRG demonstrated a protection and recovery effect on the noiseinduced-TTS group. Since KRG has been reported to be a safe compound even up to hundreds of mg/kg, a higher concentration of it may effectively protect and recover TTS.

Effect of Panax ginseng on the Graft-versus-Host Reaction, Production of Leucocyte Migration Inhibitory Factor and Expulsion of Adult Trichinella spiralis in Mice (인삼이 이식편대숙주반응, 대식세포유주저지반응 및 Trichinella spiralis의 expulsion에 미치는 영향)

  • Ha, Tai-You;Lee, Jeong-Ho;Kim, Sang-Hyung
    • The Journal of the Korean Society for Microbiology
    • /
    • v.21 no.1
    • /
    • pp.133-144
    • /
    • 1986
  • This study was undertaken to assess the effect of ginseng administration on T lymphocyte induced local xenogenic graft-versus-host(GVM) reactions which were induced with thymocyte, spleen cell and lymph node cell of ICR mice. Mice received daily 10mg of 70% alcohol ginseng extract oral1y for 100days and control mice remained untreated for the same period of time. The cells from donor mice were injected intradermally into the closely shaven abdominal skin of Sprague-Dawley rats for GVH tests. The thymocyte from control(ginseng-untreated) mice showed a negative local GVH reaction, whereas thymocyte from experimental(ginseng-treated) mice showed a positive reaction with the rate of 17.4%. When spleen cells were injected, the incidence of positive local GVH reaction was 66.7% among ginseng-treated mice, as opposed to incidence of 45.5% of positive local GVH reaction among control mice. The incidence of positive local GVH reaction of the lymph node cells when injected into a recipient was 71.4% among ginseng-treated mice as compared with that of 18.9% among control mice. The relationship between spleen cell inoculum and intensity of the local GVH reaction was assessed in ginseng-untreated mice. The intensity of GVH reaction clearly appears to be dose related. In ginseng-treated mice, a minimum of $1{\times}10^7$ spleen cell was required for production of positive local GVH reaction with almost linear relationship up to an inoculum of $5{\times}10^8$ cells. In control mice, however, a minimum of $1{\times}10^8$ spleen cells was required for positive GVH reaction. These results strongly suggest that the ginseng administration augments significantly the local xenogenic GVH reaction which was used to assess T lymphocyte function and immunocompetence of mice and in addition to this, these results appear to support previous suggestions that the local GVH reaction consitutes a qualitative test of the functional activity of T lymphocytes. These results may be the first to induce local GVH reaction, employing rats as recipient and mice as donor. This study was also desingned to investigate some of the effects of ginseng extract on lymphocyte-macrophage interactions. This was accomplished by in vitro quantification of 1) migratory inhibitory factor(MIF) synthetic capacity of splenic lymphocytes in mice previously primed with ginseng 2) MIF responsiveness of mouse peritoneal macrophages or chicken peripheral leucocytes under the presence of ginseng extract 3) migration ability of chicken peripheral leucocytes by direct stimulation of ginseng extract or ginseng saponin and 4) immunosuppressive effects of immunosuppressants such as cyclophosphamide, cyclosporin A or dexamethasone. Mice divided equally into the ginseng and the saline groups, which received intraperitoneally daily 0.2ml of ginseng absolute alcohol-extract(5mg/ml) and same amount of saline for 15 days, respectively. The cellular immune responsiveness of these mice was assayed 15 days after ginseng pretreatment. Splenic lymphocytes of mice treated with ginseng, when stimulated with sensitized specific-antigen such as sheep red blood cells or toxoplasmin, or with polyclonal activator concanavalin A, produced significantly more MIF than those of control saline group. MIF responsiveness of normal mouse macrophages was significantly augmented when assayed under the presence of ginseng extract (1mg/ml). The migratory ability of normal chicken leucocytes in the absence of MIF was significantly decreased by the stimulation of ginseng extract alone. MIF response was significantly decreased by immunosuppressants and this impaired response was not restored by ginseng pretreatment. This study was additionally performed to evaluate the effect of ginseng on the expulsion of adult Trichinella spiralis in mice. ICR mice were infected experimentally by esophageal incubation of 300 T. spiralis infective muscle larvae prepared by acid-pepsin digestion of infected mice. and received oral administration of 70% alcohol ginseng extract(10mg/mouse/day) for the indicated days plus 4 days before infection. At various times after infection, the number of adult T. spiralis worms in small intestines was determined. Interestingly, ginseng-treatment was accompanied by accelerated expulson of T. spiralis. These results led to the conclusion that Panax ginseng caused some enhancing effect on GVH reaction, macrophage migration inhibition reaction and expulsion of T. spiralis. In addition these results suggested that the mechanisms responsible for this enhancement of ginseng may be chiefly or partially due to nonspecific stimulation of cell-mediated immune response.

  • PDF

Determination of ${\gamma}-Aminobutyric$ Acid and Glutamic Acid in Rat Brain by High Performance Liquid Chromatography with Electrochemical Detection (HPLC-ECD를 이용한 흰쥐의 뇌 중 감마 아미노부티르산 및 글루탐산의 정량)

  • 강종성;이순철
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.300-305
    • /
    • 1999
  • A sensitive and efficient assay method was applied to determine the level of glutamic acid (GA) and ${\gamma}-aminobutyric$ acid (GABA) in frontal cortex and hippocampus of rat administrated with ethanol and drugs. The compounds were derivatized with ο-phthalaldehyde (OPA) and 2-mercaptoethanof for precolunm analysis. The condition for the simultaneous determination of GA, GABA and $\beta-aminobutyric$ acid (BABA) by high performance liquid chromatography with electrochemical detection was reverse phase $C_{18}$ column as stationary phase, 0.1 M phosphate buffer containing 0.1 mM $Na_4EDTA$ : methanol = 55:45 (v+v) pH 3.8 as mobile phase and 0.7V electrode voltage. The stability of reaction product of GA, GABA and BABA with OPA could be increased by adding the same volume of polyethylene glycol 400 to reaction mixture. The GABA level in frotal cortex of rat was significantly decreased by the administration of picrotoxin and diazepam, but it was significantly increased by the administration of red ginseng total saponin, N-methyl-D-glucamine and (-)-deprenyl.

  • PDF

Ginsenoside Rg1 suppresses early stage of adipocyte development via activation of C/EBP homologous protein-10 in 3T3-L1 and attenuates fat accumulation in high fat diet-induced obese zebrafish

  • Koh, Eun-Jeong;Kim, Kui-Jin;Choi, Jia;Jeon, Hui Jeon;Seo, Min-Jung;Lee, Boo-Yong
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • Background: Ginsenoside Rg1 is a class of steroid glycoside and triterpene saponin in Panax ginseng. Many studies suggest that Rg1 suppresses adipocyte differentiation in 3T3-L1. However, the detail molecular mechanism of Rg1 on adipogenesis in 3T3-L1 is still not fully understood. Methods: 3T3-L1 preadipocyte was used to evaluate the effect of Rg1 on adipocyte development in the differentiation in a stage-dependent manner in vitro. Oil Red O staining and Nile red staining were conducted to measure intracellular lipid accumulation and superoxide production, respectively. We analyzed the protein expression using Western blot in vitro. The zebrafish model was used to investigate whether Rg1 suppresses the early stage of fat accumulation in vivo. Results: Rg1 decreased lipid accumulation in early-stage differentiation of 3T3-L1 compared with intermediate and later stages of adipocyte differentiation. Rg1 dramatically increased CAAT/enhancer binding protein (C/EBP) homologous protein-10 (CHOP10) and subsequently reduced the $C/EBP{\beta}$ transcriptional activity that prohibited the initiation of adipogenic marker expression as well as triglyceride synthase. Rg1 decreased the expression of extracellular signal-regulated kinase 1/2 and glycogen synthase kinase $3{\beta}$, which are also essential for stimulating the expression of $CEBP{\beta}$. Rg1 also reduced reactive oxygen species production because of the downregulated protein level of nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase 4 (NOX4). While Rg1 increased the endogenous antioxidant enzymes, it also dramatically decreased the accumulation of lipid and triglyceride in high fat diet-induced obese zebrafish. Conclusion: We demonstrated that Rg1 suppresses early-stage differentiation via the activation of CHOP10 and attenuates fat accumulation in vivo. These results indicate that Rg1 might have the potential to reduce body fat accumulation in the early stage of obesity.

Comparison of Growth Characteristics and Compounds of Ginseng Cultivated by Paddy and Upland Cultivation (논 . 밭재배에 따른 인삼의 생육 및 성분 특성 비교)

  • Lee, Sung-Woo;Kang, Seung-Won;Kim, Do-Yong;Seong, Nak-Sul;Park, Hee-Woon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • This study was carried out to investigate the difference of growth characteristics and the content of root chemical components in four years old ginseng by paddy and upland cultivation at farmers' field in Korea. Proportions of silt, clay, liquid phase and porosity were higher in paddy soil than upland soil. The range of liquid phase was $17.5{\sim}19.5%$ in paddy and $7.0{\sim}12.8%$ in upland during growth period. EC and the other contents of OM, $NO_3^-,\;K_2O$, and Mg in paddy soil were higher than those of upland soil, while the contents of $P_2O_5$ and Ca were less than those of upland soil. The levels of chemical components of tested soil exceeded recommended range in EC, $NO_3^-$ and Ca of paddy soil, and in $P_2O_5$ and Ca of upland soil. Stem length, fresh root weight and total dry weight per plant in paddy were greater than those of upland. Root weight in paddy-ginseng showed a great increase on September, while it was not increased in upland because of early defoliation. Net assimilation rate and crop growth rate by paddy and upland cultivation showed distinct differences on May and September, and those of paddy-ginseng were higher than those of upland-ginseng. Yield and ratio of red-colored root showed no significant difference by paddy and upland cultivation, while significant differences were observed in diameter and length of primary root, contents of crude saponin and 50% ethanol extracts of primary root, and water content of root. Hardness of primary root showed no significant difference by paddy and upland cultivation until August, but it showed distinct difference on September, at which the hardness in upland cultivation was drastically decreased.

Preparation of Black Panax Ginseng by New Methods and its Antitumor Activity (신공법에 의한 흑삼의 제조 및 항암활성)

  • Kim, Eui-Keom;Lee, Jee-Hyun;Cho, Soo-Hyun;Shen, Gui-Nan;Jin, Long-Guo;Myung, Chang-Seon;Oh, Han-Jin;Kim, Dong-Hee;Yun, Jae-Don;Roh, Seong-Soo;Park, Yong-Jin;Seo, Young-Bae;Song, Gyu-Yong
    • The Korea Journal of Herbology
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2008
  • Objectives : This study was performed to efficiently make Black Panax Ginseng (BPG) and evaluate its antitumor activity. Methods : Panax ginseng was steamed at $95^{\circ}C$ for 3 h, dried and steamed again at $115^{\circ}C$ for 6 h. The main ginsenosides of BPG were $Rg_{3}$, $Rk_{1}$ and $Rg_{5}$. Results : Among the saponins in BPG, the amount of ginsenoside $Rg_{3}$ was determined by HPLC method. The 11.48 mg of ginsenoside $Rg_{3}$ was obtained from lg of dried BPG. The crude saponin fraction (CSF) of BPG was tested in vitro for its cytotoxic activities against various human cancer cell lines, such as ACHN, NCI-H23, HCT-15 and PC-3. The CSF of BPG exhibited stronger cytotoxic activity than that of red Panax ginsneng. CSF of BPG exhibited good cytotoxic activities against ACFIN, HCT-15, and PC-3 cell lines with $IC_{50}$ values of 60.3-90.8 ${\mu}g$/ml. However, CSF of BPG did not show any cytotoxic activity against NCI-H23 cell line. Conclusions : BPG produced by new manufacturing is more effective than BPG produced by existing processing in anticancer activity. And new BPG has a possibility of investigation because of high contents of Rg3, Rk1 and Rg5 that have various phisological activities.

  • PDF

Quality and Functional Properties of Red Ginseng Prepared with Different Steaming Time and Drying Methods (원료삼의 증삼 및 건조 조건별 홍삼의 품질 및 기능성)

  • Kim, Kyo-Youn;Shin, Jin-Ki;Lee, Su-Won;Yoon, Sung-Ran;Chung, Hun-Sik;Jeong, Yong-Jin;Choi, Myung-Sook;Lee, Chi-Moo;Moon, Kwang-Deog;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.494-499
    • /
    • 2007
  • The quality and functional properties of red ginseng in relation to steaming and drying conditions were evaluated. Fresh ginseng (5-year roots), cultivated in the Punggi region, were steamed for 2.5, 3.5, or 4.5 hr, and then dried by hot-air (60-$65^{\circ}C$/24 hr and $40^{\circ}C$,/3-4d) freezing ($-80^{\circ}C$/56 hr), and infrared (900 W/$62^{\circ}C$/68 hr). Hunter#s yellowness (b-value) and browning indexes (420 nm) of the samples were higher in the rootlets than in the main roots. Furthermore, these same index values were found to be high in the order of 3.5, 4.5, and 2.5 hr and infrared, hot-air, and freezing for steaming and subsequent drying, respectively. Analysis of soluble solids, total phenolics, total flavonoids, acidic polysaccharides, and electron donating abilities of the steamed and dried samples showed that 3.5hr of steaming with infrared drying was optimal. However, crude saponin contents were not influenced by steaming and drying conditions. The contents of $ginsenoside-Rg_l$, -Re, -Rf and $-Rb_2$, which were the major components in the samples, were reduced with steaming time, while the amounts of $-Rg_3$ and $-Rh_2$ increased, reaching the highest levels at 3.5 and 4.5 hr in the main roots and rootlets, respectively. The contents of $-Rg_3$ and $-Rh_2$ were similar in both the freeze-dried and hot-air dried samples.

Sensory Evaluation and Bioavailability of Red Ginseng Extract(Rg1, Rb1) by Complexation with ${\gamma}$-Cyclodextrin (${\gamma}$-cyclodextrin으로 포접한 홍삼추출물의 관능평가 및 Rg1, Rb1의 생체이용율)

  • Lee, Seung-Hyun;Park, Ji-Ho;Cho, Nam-Suk;Yu, Heui-Jong;You, Sung-Kyun;Cho, Cheong-Weon;Kim, Dong-Chool;Kim, Young-Heui;Kim, Ki-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.106-110
    • /
    • 2009
  • In order to reduce the bitter taste and improve the bioavailability of red ginseng extract(RGE), inclusion complexes (RGE-CD) of the extract with ${\alpha}-,\;{\beta}-,\;{\gamma}$-cyclodextrin were prepared and studied for their sensory quality and bioavailability compared to RGE. By complexation, the bitter taste-reducing efficacies of ${\alpha}$-CD and ${\beta}$-CD were much lower than that of ${\gamma}$-CD. In comparative sensory analysis for the bitter taste, RGE-${\gamma}$-CD10, prepared using 10%(w/w) of ${\gamma}$-CD, showed a score of 1.93(decreased by about 78%) compared to RGE as the control. In addition, in sensory analysis for flavor, RGE-${\gamma}$-CD10showed a score of 5.60. Upon increasing the amount of ${\gamma}$-CD to 15%(w/w) and 20%(w/w), respectively, the bitter taste of RGE-${\gamma}$-CD was removed and the flavor of RGE disappeared(scores of 2.67 and 1.67, respectively). Therefore RGE-${\gamma}$-CD10 was chosen as an optimum. The same dosages of RGE and RGE-${\gamma}$-CD10 were orally administered to SD(Sprague-Dawley) rats on a saponin basis, and the plasma concentrations of ginsenoside Rg1 and Rb1 were measured over time to estimate the average AUC(area under the plasma concentration versus time curve) of the ginsenosides. After the oral administration, there were no significant differences in the AUC values of the RGE and RGE-${\gamma}$-CD 10 groups for ginsenoside Rg1. However, AUC values for ginsenoside Rb1 were $25.8{\mu}g{\cdot}hr/mL$ in the RGE group and $81.5{\mu}g{\cdot}hr/mL$ in the RGE-${\gamma}$-CD 10 group, respectively. Therefore, the bioavailability of ginsenoside Rb1 in the RGE-${\gamma}$-CD 10 group was significantly higher by up to 315% compared with that in the RGE group(p = 0.0029). These results show that the bitter taste of RGE can be simultaneously removed by the complexation of RGE and ${\gamma}$-CD(RGE-${\gamma}$-CD) along with increased bioavailability.