• Title/Summary/Keyword: sandy texture

Search Result 259, Processing Time 0.032 seconds

Characteristics of Fertility on Strawberry Cultivated Soil of Plastic Film House in Chungnam Province in Korea (충남지역 시설 딸기재배 토양 비옥도 특성)

  • Choi, Moon-Tae;Lee, Jin-Il;Yun, Yeo-Uk;Lee, Jong-Eun;Lee, Bong-Chun;Yang, Euy-Seog;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.160-165
    • /
    • 2010
  • To reduce the dose of fertilizers is very important to sustainable production of many horticultural crops, including strawberry. In order to practice the environment friendly agriculture of strawberry cultivation in plastic film house, soil chemical properties of 435 soil samples (232 for loam, 83 for sandy loam, and 120 for silt loam) in Chungnam Province from2008 to 2009 were determined. The average of pH, EC, OM, Av. $P_2O_5$, Ex. $K^+$, Ex. $Ca^{2+}$, Ex. $Mg^{2+}$, and Ex. $Na^+$ was 6.5, 2.28 dS $m^{-1}$, 26 g $kg^{-1}$, 910 mg $kg^{-1}$, 1.09 $cmol_c\;kg^{-1}$, 8.3 $cmol_c\;kg^{-1}$, 2.5 $cmol_c\;kg^{-1}$, and 0.58 $cmol_c\;kg^{-1}$, respectively. The content of Av. $P_2O_5$ in sandy loam soil was significantly higher than silt loam soil, whereas other properties showed no difference between soil texture. The kinds of strawberry cultivars showed no difference in soil chemical properties. The frequency distribution within optimum range of soil chemical properties was 30.6%, 35.4%, 37.0%, 5.3%, 8.5%, 8.5%, and 17.9% for pH, EC, OM, Av. $P_2O_5$, Ex. $K^+$, Ex. $Ca^{2+}$, and Ex. $Mg^{2+}$, respectively. Especially, excessive portion of Av. $P_2O_5$, and Ex. $Ca^{2+}$ were high 86.9%, and 86.0%, respectively. EC values of soil samples were significantly positive correlatoin with all chemical properties except soil pH. In principle component analysis of chemical properties in soil samples, the percentage of variance explained by PC 1 was 38.8%, while PC 2 explained 17.8%of the variance, for a cumulative total of 56.6%. These results were able to distinguish between soil textures and strawberry cultivars. Also, these results considered that understanding of soil chemical properties under using principal component analysis be able to improve amounts of fertilizers for sustainable agriculture in plastic film house.

Physical Properties and Apparent Thermal Diffusivity of the Soils where Soil Temperature is Measured Regularly (기상청(氣象廳) 지온(地溫) 측정(測定) 토양(土壤)의 물리적(物理的) 성질(性質)과 겉보기 열확산(熱擴散) 계수(係數) 산정(算定))

  • Song, Kwan-Cheol;Jung, Yeong-Sang;Kim, Byung-Chan;Ahn, Yoon-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.220-230
    • /
    • 1992
  • Soil temperature is one of the important environmental factors which control all the physical, chemical and biological processes in soil including germination and root growth of plants and other organisms living in the soil ecosystem. Soil water and nutrient availability and mobility are temperature dependent. Soil temperature change is depended primarily upon energy exchange in soil surface, meteorological variance and physical properties of the soils which are closely related to heat transfer mechanism. In this study physical properties including bulk density, soil texture and organic matter content were measured and thermal diffusivity on the soils was calculated. Soil samples from the 66 meteorological stations under the Korea Meteorology were collected and the physical parameters were measured. To obtain relationship between thermal diffusivity and soil water content a heat probe thermal diffusivity measurement apparatus was designed and used in this experiment. According to the survey on soil physicsal properties on the 66 meteorological stations, the 52% of the surface soil texture were sandy loam and laomy sand or sand, 38% were loam and silty loam, and 10% were clay loam and silty clay loam. The bulk density which was closely related with thermal properties showed average of $1.41g/cm^3$ for sandy soils, $1.33g/cm^3$ for loam and silty loam soils, and $1.21g/cm^3$ for clay loam and silty clay loam soils. The apparent thermal diffusivity of the upper layer from 0 to 30cm ranged from 1.16 to $8.40{\times}10^{-3}cm^3/sec$ with average of $3.53{\times}10^{-3}cm^3/sec$. The apparent thermal diffusivities of the Jeju soils of which organic matter contents were high and the bulk densities were low were near $2{\times}10^{-3}cm^3/sec$. The thermal diffusivity of snow measured in Chuncheon ranged from 0.822 to $2.237{\times}10^{-3}cm^3/sec$. The damping depth calculated from the thermal diffusivity ranged from 5.92 to 13.65cm for daily basis and 124 to 342cm for yearly basis. The significant regression equation to estimate thermal diffusivity with bulk density and soil water content was obtained by the heat probe in laboratory.

  • PDF

Fate of the herbicide bensulfuron-methyl in a soil/rice plant microecosystem (벼 재배 microecosystem 내에서 제초제 bensulfuron-methyl의 행적)

  • Lee, Jae-Koo;Fuhr, F.;Kwon, Jeong-Wook;Ahn, Ki-Chang;Park, Ju-Hyoung;Lee, Yong-Pil
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • In order to elucidate the behavior of bensulfuron-methyl, a sulfonylurea herbicide, in a soil/plant microecosystem, rice plants (Oryza sativa L.) were grown for 12 weeks in the specially made stainless steel pots (17cm I.D. $\times$ 10cm H.) containing two different paddy soils treated with fresh and 13-week-aged residues of [phenyl-$^{14}C$]bensulfuron-methyl, respectively. During the aging period, the mineralization to $^{14}CO_2$ from soil A (OM, 3.59%; CEC, 7.65 $cmol^+\;kg^{-1}$; texture, sandy clay loam) and B (OM, 1.62%; CEC, 4.51 $cmol^+\;kg^{-1}$; texture, sandy loam) amounted to 6.79 and 10.15% of the originally applied $[^{14}C]$bensulfuron-methyl, respectively. The amounts of $^{14}CO_2$ evolved from the soils with fresh residues were higher than those from the soils with aged residues. At harvest after 12-week growing, $^{14}C$-radioactivity absorbed and translocated into rice plants from soils A and B containing fresh residues of bensulfuron-methyl was 1.53 and 4.40%, while 4.04 and 6.37% in the two soils containing aged residues, respectively. Irrespective of aging and soil type, the $^{14}C$-radioactivity remaining in soil ranged from 80.41 to 98.87% of the originally applied $[^{14}C]$bensulfuron-methyl. The solvent extractability of tile soils was $39.25\sim70.39%$, showing the big differences among the treatments. Most of the nonextractable soil-bound residues of $[^{14}C]$bensulfuron-methyl were incorporated into the fulvic acid fraction$(61.32\sim76.45%)$. Comparing the microbial activity of the soils with rice plants grown with that of the soils without them, the former was $1.6\sim3.0$ times higher than the latter. However, it did not correlate with the $^{14}CO_2$ evolution.

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF

Feasibility Test on Automatic Control of Soil Water Potential Using a Portable Irrigation Controller with an Electrical Resistance-based Watermark Sensor (전기저항식 워터마크센서기반 소형 관수장치의 토양 수분퍼텐셜 자동제어 효용성 평가)

  • Kim, Hak-Jin;Roh, Mi-Young;Lee, Dong-Hoon;Jeon, Sang-Ho;Hur, Seung-Oh;Choi, Jin-Yong;Chung, Sun-Ok;Rhee, Joong-Yong
    • Journal of Bio-Environment Control
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • Maintenance of adequate soil water potential during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement within and below the rooting zone can facilitate optimal irrigation scheduling aimed at minimizing the adverse effects of water stress on crop growth and development and the leaching of water below the root zone which can have adverse environmental effects. The objective of this study was to evaluate the feasibility of using a portable irrigation controller with an Watermark sensor for the cultivation of drip-irrigated vegetable crops in a greenhouse. The control capability of the irrigation controller for a soil water potential of -20 kPa was evaluated under summer conditions by cultivating 45-day-old tomato plants grown in three differently textured soils (sandy loam, loam, and loamy sands). Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30 cm depths. Even though a repeatable cycling of soil water potential occurred for the potential treatment, the lower limit of the Watermark (about 0 kPa) obtained in this study presented a limitation of using the Watermark sensor for optimal irrigation of tomato plants where -20 kPa was used as a point for triggering irrigations. This problem might be related to the slow response time and inadequate soil-sensor interface of the Watermark sensor as compared to a porous and ceramic cup-based tensiometer with a sensitive pressure transducer. In addition, the irrigation time of 50 to 60 min at each of the irrigation operation gave a rapid drop of the potential to zero, resulting in over irrigation of tomatoes. There were differences in water content among the three different soil types under the variable rate irrigation, showing a range of water contents of 16 to 24%, 17 to 28%, and 24 to 32% for loamy sand, sandy loam, and loam soils, respectively. The greatest rate increase in water content was observed in the top of 10 cm depth of sandy loam soil within almost 60 min from the start of irrigation.

Soil Texture, Electrical Conductivity and Chemical Components of Soils under the Plastic Film House Cultivation in Northern Central Areas of Korea (중북부지역(中北部地域) 시설원예지(施設園藝地) 토양(土壤)의 토성(土性), 염농도(鹽濃度) 및 화학성분(化學成分)의 조성(組成))

  • Jung, Goo-Bok;Ryu, In-Soo;Kim, Bok-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.33-39
    • /
    • 1994
  • This survey was conducted to investigate the factors affecting on salt accumulation and chemical components of soils cultivated with horticulture crops in plastic film houses. The soil samples were taken from 40 sites in the northern central areas of Korea and were analyzed for the chemical properties and soil separates. The data were evaluated with soil texture and years of cultivation as major factors. The results are summarized as follows : 1. The chemical properties of surface soils in plastic film house were pH 5.80, EC $3.59mScm^{-1}$, O.M. 4.20%, Av. $P_2O_5$ 1,178ppm, $NO_3-N$ 180ppm, Av. $SO_4{^{2-}}$ 353ppm, $Cl^-$ 240ppm, Ex. Na 0.40me/100g. 2. Compared to the outside soil of plastic film house, the inside soil had 2.5~3 times higher contents of $NO_3-N$, Av. $SO_4{^{2-}}$ and $Cl^-$, 1.2~1.8 times higher exchangeable base elements, and 2.8 times higher electrical conductivity. But pH value of the inside soil was lower than the outside soil by 0.3 pH unit. 3. Soil texture classification showed that sandy loam, loam and silt loam were 32.5 %, 37.5 %, and 30.0 %, respectively. The contents of $NO_3-N$, Av. $SO_4{^{2-}}$, $NH_4-N$ and EC value were very high in silt loam soils. Av. $P_2O_5$ content and pH value of sandy loam soils were higher than those of silt loam and loam soils. 4. The contents of O.M. and Av. $P_2O_5$ were higher in long term cultivation, but the contents of $NO_3-N$, Av. $SO_4{^{2-}}$, $Cl^-$, Ex. Mg and Ex. Na including EC of the soil with 2~4 years cultivation were higher than those of the soil with above 5 years cultivation. 5. Multiple linear regression analysis showed that contribution degree of soil chemical properties to the EC was high in the order of $NO_3-N$ > Av. $SO_4{^{2-}}$ > Ex. Na > $Cl^-$ > Av. $P_2O_5$ > $NH_4-N$ > Ex. Mg>Ex. Ca. Among the soil chemical properties the contribution of anions was remarkably high. 6. EC value correlated with ${\sum}A$(total content of anions)as $r=0.932^{**}$ and with ${\sum}C$(total content of cations) as $r=0.452^{**}$.

  • PDF

Effect of Gypsum, Popped Rice Hull and Zeolite on Soil Aggregation in Reclaimed Tideland (간척지 토양에서 석고, 팽화왕겨 및 Zeolite 처리가 토양의 입단형성에 미치는 영향)

  • Kim, Seong-Jo;Baek, Seung-Hwa;Lee, Sang-Uk;Kim, Dae-Geun;Na, Young-Joon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.231-237
    • /
    • 2005
  • Gypsum treated to fine sandy loam increased the fornation of >2 mm aggregates in $1,550kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Kbfg1) and $3,100kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Kbfg2) to compare with control, Kc, at 60DAT, and bigger aggregates in general at 90DAT. The higher treatment of gypsum level, the <0.1 mm aggregates were less decreased as in Kbfg1, Kbfg2, and $6,200kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Kbfg3) and aggregates of 0.25->2 mm were increased with increasing level of gypsum with more effective in Kbfg2 and Kbfg3 at 120DAT. Gypsum treated to silt loam increased aggregates of 2.0-1.0 and 1.0-0.5 mm in $3,100kg\;CaSO_4{\cdot}2H_2O\;10a^{-1}$ (Mbfg2) to compare with control (Mc), at 60DAT. Degrees of aggregation from 0.5-0.25 mm to >2 mm aggregates at 90DAT were distinctly higher. The higher treatment of gypsum level accelerated more aggregation of silt loam soil, and aggregates of 0.5-0.25 mm was most increased in Mbfg2 at 120DAT. Popped rice hulls treated to fine sandy loam increased aggregates of 2.0-1.0 mm in plots of $1,000kg\;10a^{-1}$ (Kbfhl) only to compare with control (Kc), at 60DAT, and aggregates of >2 mm and 2.0-1.0 mm Kbfh1 at 90DAT. At 120DAT, aggregation by popped rice hulls was most effective in Kbfbl pot. Popped rice hulls treated to silt loam increased in aggregates of >2 mm and 2.0-1.0 mm in $2000kg\;10a^{-1}$, Mbfb2 to compare with control, Mc, at 60DAT. Degrees of aggregation by popped rice hulls at 90DAT were higher in $1,000kg\;10a^{-1}$, Mbfh1, and Mbfh2, and at 120DAT was in $3,000kg\;10a^{-1}$, Mbfb3. Zeolite treatment with popped rice hulls, $1,500kg\;10a^{-1}$, increased in >2.0 mm aggregates in $1,000kg\;10a^{-1}$, Kbfbz1, $2,000kg\;10a^{-1}$, Kbfbz2, $3,000kg\;10a^{-1}$, Kbfhz3, and Mbfbz1, $1,000kg\;10a^{-1}$, Mbfbz2, $2,000kg\;10a^{-1}$, and $3,000kg\;10a^{-1}$, Mbthz3, to compare with control (Kc and Mc), at 60DAT. irrespective of soil texture. At 90DAT, >2.0-0.5 mm aggregates increased in Kbfhz1 of fine sandy loam. aggregates of >0.25 mm in $200kg\;10a^{-1}$ (Mbfbz1), $400kg\;10a^{-1}$ (Mbfhz2), $800kg\;10a^{-1}$ (Mbfhz3) of silt loam increased with the level of zeolite treatment. At 120DAT, the effect of zeolite treated to both soils showed the decrease of <0.1 mm aggregates. As the result, soil amendments for soil aggregation was more effective in the order of popped rice hulls+Zeolite > gypsum > popped rice hulls in fine sandy loam, and in the order of gypsum > popped rice huUs+zeolite > popped rice hulls in silt loam, respectively.

Relationship between morphological characteristics of cultivated upland soils and organic matter content (전토양(田土壤)의 형태적(形態的) 특성(特性)과 유기물함량(有機物含量)과의 관계(關係))

  • Shin, Chun Soo;Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.1
    • /
    • pp.17-21
    • /
    • 1974
  • This study was performed to find out the organic matter content, and what is more, the relation between its content and major morphological properties of cultivated upland soils in Korea. The results were as follows. 1. The average organic matter content of cultivated upland soils was 1.73 percent, mostly ranging from 0.6 to 2.5 percent. 2. Examining the organic matter content by subgroup of cultivated upland soils. It was found 13 percent in volcanic ash yellowish brown Cambisols and 6.3 percent in Humic yellowish brown Entisols, Fluventic yellowish brown Entisols was found 1.0 percent, lowest one. The average organic matter content of Entisols, Cambisols, and Argillisols was 1.1, 2.1, and 1.8 percent respectively. 3. According to organic matter content by texture of profile, the average content of sandy soils was 1.0 percent; 1.5 percent in coarse loamy soils; and 1.8 percent in fine loamy soils. The organic matter content increased with an increased clay content in coarse texture group, but there was no significant difference between fine loamy and clayey soil group. This tendency was also observed in surface soil texture. 4. In the relation between slope and organic matter content, its content in flat area was 1.3 percent that is rather low compared to 1.6 percent of sloping area. Especially, cultivated upland soils ranging brown 15 to 30 percent in slope were 1.8 percent which is relatively high. 5. The organic matter content have nothing to do with suitability groups. Itss ontent of I, II, III, IV and V class was 1.3, 1.6, 1.7, 1.2 and 2.0 percent respectively.

  • PDF

Response of Potassium on Main Upland Crops (주요(主要) 전작물(田作物)에 대(對)한 가리성분(加里成分)의 비교(肥效))

  • Ryn, In Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.171-188
    • /
    • 1977
  • The response and effect on main upland crops to potassium were discussed and summarized as follows. 1. Adequate average amounts of potash per 10a were 32kg for forage crop; 22.5kg for vegetable crops; 17.3kg for fruit trees; 13.3kg for potatoes; and 6.5kg for cereal crops. Demand of potassium fertilizer in the future will be increased by expanding the acreage of forage crops, vegetable crops and fruit trees. 2. On the average, optimum potash rates on barley, wheat, soybean, corn, white potato and sweet potato were 6.5, 6.9, 4.5, 8.1, 8.9, and 17.7kg per 10a respectively. Yield increaments per 1kg of potash per 10a were 4-5kgs on the average for cereal crops, 68kg for white potato, and 24kg for sweet potato. 3. According to the soil testing data, the exchangeable potassium in the coastal area was higher than that in the inland area and medium in the mountainous area. The exchangeable potassium per province in decreasing order is Jeju>Jeonnam>Kangweon>Kyongnam. Barley : 4. The response of barley to an adequate rate of potassium seemed to be affected more by differences in climatic conditions than to the nature of the soil. 5. The response and the adequate rate of potassium in the southern area, where the temperature is higher, were low because of more release of potassium from the soil. However, the adequate rate of phosphorus was increased due to the fixation of applied phosphorus into the soil in high temperature regions. The more nitrogen application would be required in the southern area due to its high precipitation. 6. The average response of barley to potassium was lower in the southern provinces than northern provinces. Kyongsangpukdo, a southern province, showed a relatively higher response because of the low exchangeable potassium content in the soil and the low-temperature environment in most of cultivation area. 7. Large annual variations in the response to and adequate rates of potassium on barley were noticed. In a cold year, the response of barley to potassium was 2 to 3 times higher than in a normal year. And in the year affected by moisture and drought damage, the responses to potassium was low but adequate rates was higher than cold year. 8. The content of exchangeable potassium in the soil parent materials, in increasing order was Crystalline Schist, Granite, Sedimentary and Basalt. The response of barley to potash occurred in the opposite order with the smallest response being in Crystalline Schist soil. There was a negative correlation between the response and exchangeable potassium contents but there was nearly no difference in the adequate rates of potassium. 9. Exchangeable potassium according to the mode of soil deposition was Alluvium>Residium>Old alluvium>Valley alluvium. The highest response to potash was obtained in Valley alluvium while the other s showed only small differences in responses. 10. Response and adequate rates of potassium seemed to be affected greatly by differences in soil texture. The response to potassium was higher in Sandy loam and Loam soils but the optimum rate of potassium was higher in Clay and Clay loam. Especially when excess amount of potassium was applied in Sandy loam and Loam soils the yield was decreased. 11. The application of potassium retarded the heading date by 1.7 days and increased the length of culm. the number of spikelet per plant, the 1,000 grain weight and the ratio of grain weight to straw. Soybean : 12. Average response of soybean to potassium was the lowest among other cereal crops but 28kg of grain yield was incrased by applying potash at 8kg/10a in newly reclaimed soils. 13. The response in the parent materials soil was in the order of Basalt (Jeju)>Sedimentay>Granite>Lime stone but this response has very wide variations year to year. Corn : 14. The response of corn to potassium decreased in soils where the exchangeable potassium content was high. However, the optimum rate of applied potassium was increased as the soil potassium content was increased because corn production is proportional to the content of soil potassium. 15. An interaction between the response to potassium and the level of phosphorus was noted. A higher response to potassium and higher rates of applied potassium was observed in soils contained optimum level of phosphorus. Potatoes : 16. White potato had a higher requirement for nitrogen than for potassium, which may imply that potato seems to have a higher capability of soil potassium uptake. 17. The yield of white potato was higher in Sandy loam than in Clay loam soil. Potato yields were also higher in soils where the exchangeable potassium content was high even in the same soil texture. However, the response to applied potassium was higher in Clay loam soils than in Sandy loam soils and in paddy soil than in upland soil. 18. The requirement for nitrogen and phosphorus by sweet potato was relatively low. The sweet potato yield is relatively high even under unfavorable soil conditions. A characteristics of sweet potatoes is to require higher level of potassium and to show significant responses to potassium. 19. The response of sweet potato to potassium varied according to soil texture. Higher yields were obtained in Sandy soil, which has a low exchangeable potassium content, by applying sufficient potassium. 20. When the optimum rate of potassium was applied, the yields of sweet potato in newly reclaimed soil were comparable to that in older upland soils.

  • PDF

Measurement Technique for Soil Loss Estimation Using Laser Distance Meter in Sloped Upland (거리측정기를 이용한 경사지 밭의 토양유실량 평가)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Lee, Gye-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.127-133
    • /
    • 2005
  • The measurement technique using laser distometer to estimate soil erosion on sloped upland was assessed for its possibility for application. This technique was practiced in lysimeter installed in Chuncheon and Pyeongchang in 2001. The lysimeter installed at Chuncheon has 12% slope, 10 m slope length, 2 m width, and soil texture was sandy loam, while the lysimeter installed at Pyeongchang showed 23% slope, 15 m slope length, 5 m width, and sandy loam soil. Change of surface soil height was monitored using laser distance meter before and after rainy season on same spots. The Investigated periods in Chuncheon and Pyeongchang were from 22 June to 22 September and from July to October, respectively. Precipitation in Chuncheon and Pyeongchang in this period was 892.2 and 931.9 mm, respectively. Rainfall over 60% of annual precipitation was concentrated on July and August in Chuncheon and September and October in Pyeongchang, respectively. By monitoring the change of surface soil height using laser distance meter before and after rainy season, eroded soil surface in up-down fallow field in Chuncheon was 0.874 cm, while eroded soil surface in slant furrow field in Pyeongchang was 1.127 cm, which correspond to 79.5 and $98.0MT\;ha^{-1}$. Soil erosion increased as furrow length increased. Amounts of estimated soil loss using laser distance meter was 0.98-1.18 times higher compared to the estimated values through Iysimeter experiment, which implies possibility for application to monitor soil loss particularly in up-down and slant furrowed field. However, in the lysimeter with contoured tillage, amount of estimated soil loss using laser distance meter was approximately a half compared to that from lysimeter experiment, which implies inadequacy of distance meter application in contour- tillage field. The great soil loss difference between distance meter and lysimeter might be caused by disruption of some of the contoured furrows in lysimeter. The measurement technique using distometer in this study could be useful to estimate soil loss especially in up-down and slant-tillage fields.