Fate of the herbicide bensulfuron-methyl in a soil/rice plant microecosystem

벼 재배 microecosystem 내에서 제초제 bensulfuron-methyl의 행적

  • Lee, Jae-Koo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Fuhr, F. (Institut fur Chemie und Dynamik der Geosphare Institut 5:Radioagronomie) ;
  • Kwon, Jeong-Wook (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Ahn, Ki-Chang (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Park, Ju-Hyoung (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Yong-Pil (Department of Agricultural Chemistry, Chungbuk National University)
  • Published : 2004.12.30

Abstract

In order to elucidate the behavior of bensulfuron-methyl, a sulfonylurea herbicide, in a soil/plant microecosystem, rice plants (Oryza sativa L.) were grown for 12 weeks in the specially made stainless steel pots (17cm I.D. $\times$ 10cm H.) containing two different paddy soils treated with fresh and 13-week-aged residues of [phenyl-$^{14}C$]bensulfuron-methyl, respectively. During the aging period, the mineralization to $^{14}CO_2$ from soil A (OM, 3.59%; CEC, 7.65 $cmol^+\;kg^{-1}$; texture, sandy clay loam) and B (OM, 1.62%; CEC, 4.51 $cmol^+\;kg^{-1}$; texture, sandy loam) amounted to 6.79 and 10.15% of the originally applied $[^{14}C]$bensulfuron-methyl, respectively. The amounts of $^{14}CO_2$ evolved from the soils with fresh residues were higher than those from the soils with aged residues. At harvest after 12-week growing, $^{14}C$-radioactivity absorbed and translocated into rice plants from soils A and B containing fresh residues of bensulfuron-methyl was 1.53 and 4.40%, while 4.04 and 6.37% in the two soils containing aged residues, respectively. Irrespective of aging and soil type, the $^{14}C$-radioactivity remaining in soil ranged from 80.41 to 98.87% of the originally applied $[^{14}C]$bensulfuron-methyl. The solvent extractability of tile soils was $39.25\sim70.39%$, showing the big differences among the treatments. Most of the nonextractable soil-bound residues of $[^{14}C]$bensulfuron-methyl were incorporated into the fulvic acid fraction$(61.32\sim76.45%)$. Comparing the microbial activity of the soils with rice plants grown with that of the soils without them, the former was $1.6\sim3.0$ times higher than the latter. However, it did not correlate with the $^{14}CO_2$ evolution.

토양/벼 microecosystem내에서 sulfonylurea계 제초제 bensulfuron-methyl의 행적을 구명하기 위하여 [Phenyl-$^{14}C$]bensulfuron-methyl의 신생(fresh) 잔류물과 13주간 숙성된 숙성(aged) 잔류물을 처리한 2종의 상이한 논토양을 stainless steel pot (내경, 17 cm $\times$ 높이 10 cm)에 담고 벼 (Oryza sativa L.)를 12주간 재배 하였다. 토양 A(유기물 함량, 3.59%; 양이온 치환용량, 7.65 $cmol^+\;kg^{-1}$; 토성, 사질 식양토)와 토양 B(유기물 함량, 1.62%; 양이온 치환용량, 4.51 $cmol^+\;kg^{-1}$; 토성, 사양토)에서 $[^{14}C]$bensulfuron-methyl이 13주간의 숙성 기간동안 $^{14}CO_2$로 무기화된 량은 최초 처리량의 각각 6.79와 10.15% 이었다. 신생 잔류물을 함유한 토양으로부터 방출된 $^{14}CO_2$량은 숙성 잔류물을 처리한 토양으로부터 방출된 량보다 많았다. 12주간 벼를 재배하고 수확하였을 때 신생 잔류물을 함유한 토양 A와 B로부터 벼가 흡수 이행한 $^{14}C$량은 각각 최초 처리량의 1.53과 4.40%이었고 숙성 잔류물을 함유한 토양 A와 B로부터 흡수 이행한 양은 최초 처리량의 4.04와 6.37% 이었다. 숙성과 토성에 관계없이 토양에 잔류하고 있는 $^{14}C$량은 최초처리량의 $80.41\sim98.87%$ 이었다. 유기 용매로는 토양에 잔류하는 $^{14}C$ 방사능의 $39.25\sim70.39%$를 추출할 수 있었고 bensulfuron-methyl의 추출불가 토양 흡착 잔류물의 대부분은 fulvic acid 부분에 혼입되어 있었다 $(61.32\sim76.45%)$. 벼 재배 유무에 따른 미생물 활성을 비교한 결과 벼 재배시 두 토양에서 모두 미생물 활성이 벼를 재배하지 않은 경우의 $1.6\sim3.0$ 배 이었으나 $^{14}CO_2$ 발생량과는 반드시 일치하지 않았다.

Keywords

References

  1. Alef, K. and D. Kleiner (1989) Rapid and sensitive determination of microbial activity in soils and in soil aggregates by dimethyl sulfoxide reduction. Biol. Fertil. Soils 8:349-355
  2. Cavanna, S., E. Garatti, E. Rastelli, G. P. Molinari(1998) Adsorption and desorption of bensulfuron-methyl on Italian paddy field soils. Chemosphere 37:1547-1555 https://doi.org/10.1016/S0045-6535(98)00149-0
  3. Curl, E. A. and B. Truelove (1986) Root Exudates, pp.55-92, In the Rhizosphere Springer-Verlag, Berlin
  4. Kimura, M., H. Wade, and Y. Takai (1977) Studies on the rhizosphere of paddy rice (part 4) : Physical and chemical features of rhizosphere (II). Jpn. J. Soil Sci. Plant Nutr. 48:540-545
  5. Lee, Jae Koo, Kee-Sung Kyung, and W. B. Wheeler (1991) Rice plant uptake of fresh and aged residues of carbofuran from soil. J. Agric. Food Chem. 39: 588-593 https://doi.org/10.1021/jf00003a031
  6. Miskovic, K., B. Rasovic, L. Starcevic, and N. Milosevic (1977) Effect of nitrogen on dehydrogenase activity and the number of actinomycetes and fungi in soil and rhizosphere of corn. Mikrobiologiya 14:105-116
  7. Nicholas, D. J. D. (1965) Influence of the rhizosphere on the mineral nitrogen of the plant. In Ecology of soil-borne plant pathogens; Baker, K. F, Snyder, W. C., Eds.; University of California Press : Berkeley, pp.210-217
  8. Nicosia, S., C. Collison, and P. Lee (1991) Bensulfuron-methyl dissipation in. California rice fields and residue levels in agricultural drains and the Sacramento River. Bull. Environ. Contam. Toxicol. 47:131-137
  9. Smith, C. (1991) Sulfonylurea Herbicides, PJB Publications Ltd. 9-10
  10. Takeda, S. , D. L. Erbes, P. B. Sweetser, J. V. Hay, and T. Yuyama (1986) Mode of herbicidal and selective action of DPX-F5384 between rice and weeds. Weed Res. Japan. 31:157-163
  11. Yuyama, T., S. Takeda, H. Watanabe, T. Asami, S. Peudpaichit, J. L. Malassa, and P. Heiss.(1984) DPX-F5384 a new broad-spectrum rice herbicide. Proc 7th Indonesian Weed Science Society Conf., Vol. 1, pp.89-94
  12. Yuyama, T., R. C. Ackerson, and S. Takeda($1987^{a}$) Uptake and distribution of bensulfuron methyl (DPX-F 5384) in rice. Weed Res. Japan. 32:173-179
  13. Yuyama, T., R. C. Ackerson, S. Takeda, and Y. Watanabe ($1987^{b}$) Soil and water relationship on the behavior of bensulfuron-methyl (DPX-F 5384) under the paddy field conditions, Weed Res. Japan. 32:282-291