• Title/Summary/Keyword: sandwich Timoshenko beam

Search Result 20, Processing Time 0.025 seconds

Universal Theory for Planar Deformations of an Isotropic Sandwich Beam (등방성 샌드위치 빔의 평면 변형을 위한 통합 이론)

  • Lee, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.35-40
    • /
    • 2020
  • This work is concerned with various planar deformations of an isotropic sandwich beam, which generally consists of three layers: two stiff skin layers and one soft core layer. When one layer of the sandwich beam is modeled as a beam, the variational-asymptotic method is rigorously used to construct a zeroth-order beam model, which is similar to a generalized Timoshenko beam model capable of capturing the transverse shear deformations but still carries out the zeroth-order approximation. To analyze the planar sandwich beam, the sum of the energies of the two skin layers and one core layer is then formulated with different material and geometric properties and represented by a universal beam model in terms of the core-layer kinematics through interface displacement and stress continuity conditions. As a preliminary validation, two extreme examples are presented to demonstrate the capability and accuracy of this present approach.

The effect of a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory

  • Mehdi Mohammadimehr
    • Advances in nano research
    • /
    • v.17 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • In this article, a nonlocal stress-strain elasticity theory on the vibration analysis of Timoshenko sandwich beam theory with symmetric and asymmetric distributions of porous core and functionally graded material facesheets is introduced. According to nonlocal elasticity Eringen's theory (nonlocal stress elasticity theory), the stress at a reference point in the body is dependent not only on the strain state at that point, but also on the strain state at all of the points throughout the body; while, according to a new nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Also, with combinations of two concepts, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It is concluded that the natural frequency decreases with an increase in the nonlocal stress parameter; while, this effect is vice versa for nonlocal strain elasticity, because the stiffness of Timoshenko sandwich beam decreases with increasing of the nonlocal stress parameter; in which, the nonlocal strain parameter leads to increase the stiffness of structures at micro/nano scale. It is seen that the natural frequency by considering both nonlocal stress parameter and nonlocal strain parameter is higher than the nonlocal stress parameter only and lower for a nonlocal strain parameter only.

Forced vibration of a sandwich Timoshenko beam made of GPLRC and porous core

  • Mohammad Safari;Mehdi Mohammadimehr;Hossein Ashrafi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, forced vibration behavior of a piezo magneto electric sandwich Timoshenko beam is investigated. It is assumed a sandwich beam with porous core and graphene platelet reinforced composite (GPLRC) in facesheets subjected to magneto-electro-elastic and temperature-dependent material properties. The magneto electro platelets are under linear function along with the thickness that includes a cosine function and magnetic and electric constant potentials. The governing equations of motion are derived using modified strain gradient theory for microstructures. The effects of material length scale parameters, temperature change, different distributions of porous, various patterns of graphene platelets, and the core to face sheets thickness ratio on the natural frequency and excited frequency of a sandwich Timoshenko beam are scrutinized. Various size-dependent methods effects such as MSGT, MCST, and CT on the natural frequency is considered. Moreover, the final results affirm that the increase in porosity coefficient and volume fractions lead to an increase in the amount of natural frequency; while vice versa for the increment in the aspect ratio. From forced vibration analysis, it is understood that by increasing the values of volume fraction and the length thickness of GPL, the maximum deflection of a sandwich beam decreases. Also, it is concluded that increasing the temperature, the thickness of GPL, and the initial force leads to a decrease in the maximum deflection of GPL. It is also shown that resonance phenomenon occurs when the natural and excitation frequencies become equal to each other. Outcomes also reveal that the third natural frequency owns the minimum value of both deflection and frequency ratio and the first natural frequency has the maximum.

Vibration of elastically supported bidirectional functionally graded sandwich Timoshenko beams on an elastic foundation

  • Wei-Ren Chen;Liu-Ho Chiu;Chien-Hung Lin
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.197-209
    • /
    • 2024
  • The vibration of elastically supported bidirectional functionally graded (BDFG) sandwich beams on an elastic foundation is investigated. The sandwich structure is composed of upper and lower layers of BDFG material and the core layer of isotropic material. Material properties of upper and lower layers are assumed to vary continuously along the length and thickness of the beam with a power-law function. Hamilton's principle is used to deduce the vibration equations of motion of the sandwich Timoshenko beam. Then, the partial differential equation of motion is spatially discretized into a time-varying ordinary differential equation in terms of Chebyshev differential matrices. The eigenvalue equation associated with the free vibration is formulated to study the influence of various slenderness ratios, material gradient indexes, thickness ratios, foundation and support spring constants on the vibration frequency of BDFG sandwich beams. The present method can provide researchers with deep insight into the impact of various geometric, material, foundation and support parameters on the vibration behavior of BDFG sandwich beam structures.

Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM

  • Mohammadimehr, M.;Shahedi, S.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.1-36
    • /
    • 2016
  • In the present study, the nonlinear magneto-electro-mechanical free vibration behavior of rectangular double-bonded sandwich microbeams based on the modified strain gradient theory (MSGT) is investigated. It is noted that the top and bottom sandwich microbeams are considered with boron nitride nanotube reinforced composite face sheets (BNNTRC-SB) with electrical properties and carbon nanotube reinforced composite face sheets (CNTRC-SB) with magnetic fields, respectively, and also the homogenous core is used for both sandwich beams. The connections of every sandwich beam with its surrounding medium and also between them have been carried out by considering Pasternak foundations. To take size effect into account, the MSGT is introduced into the classical Timoshenko beam theory (CT) to develop a size-dependent beam model containing three additional material length scale parameters. For the CNTRC and BNNTRC face sheets of sandwich microbeams, uniform distribution (UD) and functionally graded (FG) distribution patterns of CNTs or BNNTs in four cases FG-X, FG-O, FG-A, and FG-V are employed. It is assumed that the material properties of face sheets for both sandwich beams are varied in the thickness direction and estimated through the extended rule of mixture. On the basis of the Hamilton's principle, the size-dependent nonlinear governing differential equations of motion and associated boundary conditions are derived and then discretized by using generalized differential quadrature method (GDQM). A detailed parametric study is presented to indicate the influences of electric and magnetic fields, slenderness ratio, thickness ratio of both sandwich microbeams, thickness ratio of every sandwich microbeam, dimensionless three material length scale parameters, Winkler spring modulus and various distribution types of face sheets on the first two natural frequencies of double-bonded sandwich microbeams. Furthermore, a comparison between the various beam models on the basis of the CT, modified couple stress theory (MCST), and MSGT is performed. It is illustrated that the thickness ratio of sandwich microbeams plays an important role in the vibrational behavior of the double-bonded sandwich microstructures. Meanwhile, it is concluded that by increasing H/lm, the values of first two natural frequencies tend to decrease for all amounts of the Winkler spring modulus.

Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC

  • Safari, Mohammad;Mohammadimehr, Mehdi;Ashrafi, Hossein
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.115-128
    • /
    • 2021
  • In this article, free vibration behavior of electro-magneto-thermo sandwich Timoshenko beam made of porous core and Graphene Platelet Reinforced Composite (GPLRC) in a thermal environment is investigated. The governing equations of motion are derived by using the modified strain gradient theory for micro structures and Hamilton's principle. The magneto electro are under linear function along the thickness that contains magnetic and electric constant potentials and a cosine function. The effects of material length scale parameters, temperature change, various distributions of porous, different distributions of graphene platelets and thickness ratio on the natural frequency of Timoshenko beam are analyzed. The results show that an increase in aspect ratio, the temperature change, and the thickness of GPL leads to reduce the natural frequency; while vice versa for porous coefficient, volume fractions and length of GPL. Moreover, the effect of different size-dependent theories such as CT, MCST and MSGT on the natural frequency is investigated. It reveals that MSGT and CT have most and lowest values of natural frequency, respectively, because MSGT leads to increase the stiffness of micro Timoshenko sandwich beam by considering three material length scale parameters. It is seen that by increasing porosity coefficient, the natural frequency increases because both stiffness and mass matrices decreases, but the effect of reduction of mass matrix is more than stiffness matrix. Considering the piezo magneto-electric layers lead to enhance the stiffness of a micro beam, thus the natural frequency increases. It can be seen that with increasing of the value of WGPL, the stiffness of microbeam increases. As a result, the value of natural frequency enhances. It is shown that in hc/h = 0.7, the natural frequency for WGPL = 0.05 is 8% and 14% less than its for WGPL = 0.06 and WGPL = 0.07, respectively. The results show that with an increment in the length and width of GPLs, the natural frequency increases because the stiffness of micro structures enhances and vice versa for thickness of GPLs. It can be seen that the natural frequency for aGPL = 25 ㎛ and hc/h = 0.6 is 0.3% and 1% more than the one for aGPL = 5 ㎛ and aGPL = 1 ㎛, respectively.

Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators

  • Rao, K. Venkata;Raja, S.;Munikenche, T.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.55-80
    • /
    • 2014
  • The present work pays emphasis on investigating the effect of different types of debonding on the bending behaviour of active sandwich beam, consisting of both extension and shear actuators. An active sandwich beam finite element is formulated by using Timoshenko's beam theory, characterized by first order shear deformation for the core and Euler-Bernoulli's beam theory for the top and bottom faces. The problem of debondings of extension actuator and face are dealt with by employing four-region model for inner debonding and three-region model for the edge debonding respectively. Displacement based continuity conditions are enforced at the interfaces of different regions using penalty method. Firstly, piezoelectric actuation of healthy sandwich beam is assessed through deflection analysis. Then the effect of actuators' debondings with different boundary conditions on bending behavior is computationally evaluated and experimentally clamped-free case is validated. The results generated will be useful to address the damage tolerant design procedures for smart sandwich beam structures with structural control and health monitoring applications.

An analytical study on free vibration of magneto electro micro sandwich beam with FG porous core on Vlasov foundation

  • Kazem Alambeigi;Mehdi Mohammadimehr;Mostafa Bamdad
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.423-439
    • /
    • 2023
  • The aim of this paper is to investigate the free vibration behavior of the micro sandwich beam composing of five layers such as functionally graded (FG) porous core, nanocomposite reinforced by carbon nanotubes (CNTs) and piezomagnetic/piezoelectric layers subjected to magneto electrical potential resting on silica aerogel foundation. The effect of foundation has been taken into account using Vlasov model in addition to rigid base assumption. For this purpose, an iterative technique is applied. The material properties of the FG porous core and FG nanocomposite layers are considered to vary throughout the thickness direction of the beams. Based on the Timoshenko beam theory and Hamilton's principle, the governing equations of motion for the micro sandwich beam are obtained. The Navier's type solution is utilized to obtain analytical solutions to simply supported micro sandwich beam. Results are verified with corresponding literatures. In the following, a study is carried out to find the effects of the porosity coefficient, porous distribution, volume fraction of CNT, the thickness of silica aerogel foundation, temperature and moisture, geometric parameters, electric and magnetic potentials on the vibration of the micro sandwich beam. The results are helpful for the design and applications of micro magneto electro mechanical systems.

Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories

  • Hanifehlou, Sona;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.427-432
    • /
    • 2020
  • In this research, the buckling analysis of sandwich beam with composite reinforced by graphene platelets (GPLs) in two face sheets is investigated. Three type various porosity patterns including uniform, symmetric and asymmetric are considered through the thickness direction of the core. Also, the top and bottom face sheets layers are considered composite reinforced by GPLs/CNTs based on Halpin-Tsai micromechanics model and extended mixture rule, respectively. Based on various shear deformation theories such as Euler-Bernoulli, Timoshenko and Reddy beam theories, the governing equations of equilibrium using minimum total potential energy are obtained. It is seen that the critical buckling load decreases with an increase in the porous coefficient, because the stiffness of sandwich beam reduces. Also, it is shown that the critical buckling load for asymmetric distribution is lower than the other cases. It can see that the effect of graphene platelets on the critical buckling load is higher than carbon nanotubes. Moreover, it is seen that the difference between carbon nanotubes and graphene platelets for Reddy and Euler-Bernoulli beam theories is most and least, respectively.

Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazmandnia, Navid
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.149-159
    • /
    • 2018
  • Thermo-mechanical buckling of sandwich beams with a stiff core and face sheets made of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) within the framework of Timoshenko beam theory is presented. The material properties of FG-CNTRC are supposed to vary continuously in the thickness direction and are estimated through the rule of mixture. Also the properties of these materials should be considered temperature dependent. The governing equations and boundary conditions are derived by using Hamilton's principle and solved using an efficient technique called the Differential Transform Method (DTM) to achieve the critical buckling of the sandwich beam in uniform thermal environment. A detailed parametric study is guided to investigate the effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, and clamped-clamped, simply-simply and clamped-simply end supports on the critical buckling behavior of sandwich beams with FG-CNTRC face sheets. Numerical results for comparison of sandwich beams with uniformly distributed carbon nanotube-reinforced composite (UD-CNTRC) face sheets with those with FG-CNTRC face sheets are also presented.