• Title/Summary/Keyword: sand permeability

Search Result 249, Processing Time 0.029 seconds

Utilization of Recycled Aggregates and Crushed Stone as Horizontal Drains in Soft Ground (수평 배수재로서 순환골재와 쇄석의 활용 방안)

  • Lee, Dal-Won;Lim, Jin-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.111-123
    • /
    • 2010
  • In this study, laboratory model test on utilization of recycled aggregates and crushed stone as horizontal drains to use alternative material of sand in soft ground is practiced. The coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~5.1 times and 2.0~3.3 times greater than sand, respectively. The horizontal coefficient of permeability in case of installing the horizontal perforated drain pipe showed largely 1.9~6.8 times more than the case of not installing. The drainage distance showed 1.7~1.8 times greater than sand. When a degree of consolidation is 90 %, there is no delay of consolidation in SCP and PVD improvement sections. Therefore, it is proven that the field applicability is excellent. Also, the suitable quality management criterion is presented to make use of a horizontal drains in soft ground on the basis of analysis of the physical and environmental characteristics.

Improving the permeability and adsorption of phenol by organophilic clay in clay liners

  • Heidarzadeh, Nima;Parhizi, Paria
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.96-103
    • /
    • 2020
  • The aim of this study is to investigate the effect of five different combinations including: sand 70%, bentonite 30% (S70B30)- sand 80%, bentonite 20% (S80B20)- sand 80%, organophilic 20% (S80M20)- sand 60%, bentonite 20%, organophilic 20% (S60B30M20) and sand 75% - bentonite 15% - organophilic 10% (S75B15M10) on landfill linear structure in order to decrease phenol leaching. Hydraulic conductivity and adsorption behavior of the samples were investigated. The results demonstrated that the lowest hydraulic conductivity coefficient ($1.16{\times}10^{-11}{\frac{m}{s}}$) was obtained for S70B30. Furthermore, adding more than 20% of bentonite had no significant effect on reducing permeability. Moreover, Freundlich isotherm was introduced as the best model explaining adsorption behaviour due to its highest determination coefficient (0.945). The best samples for adsorption capacity of phenol and for both permeability and adsorption are S80M20 and S60B30M20, respectively. Although the presence of bentonite was effective in reducing hydraulic conductivity, organic clay had no considerable impact on reducing permeability. Though, it's an exceptional role in adsorbing organic contaminants including phenol cannot be ignored. To meet all regulatory constraints, the optimal compound is made up of 10.2% of bentonite and 2.8% of organophilic clays with a minimized cost of 13.64 ($/ton).

Experimental Study on Characteristics of Natural Fiber Mat (수평 천연섬유배수재의 공학적 특성 평가를 위한 실험적 연구)

  • Kim, Ju Hyong;Cho, Sam-Deok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.3-9
    • /
    • 2005
  • Natural fiber mat made with compressed coconut mat and jute filter is in the spotlight recently as an alternative material for sand mat, which is getting expensive in Korea. Tensile strength and permeability tests for the natural fiber mat were carried out to evaluate for its practical use in this study. Despite of very low tensile strength of coconut mat, that of jute filter was satisfied with conventional criteria of geotextile suggested by Christopher and Holtz(1985). Besides, permeability of fiber mat under high compressive pressure was greater than that of conventional sand material used as sand mat. It was found that the fiber mat has a great potential in substituting the conventional sand material.

  • PDF

Characteristics of Crushed Oyster-shell as a Substitute of Sand for Sand Compaction Pile (모래다짐말뚝(SCP) 재료로서 파쇄 굴패각의 특성조사)

  • 윤길림;윤여원;채광석;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.281-290
    • /
    • 2003
  • In order to investigate recycling possibility as a construction material of oyster-shells, the geotechnical characteristics including permeability, confined compression and shear strength of crushed oyster shell were quantitatively examined in terms of fineness modulus and relative density of crushed oyster-shell. Experimental results show that the crushed oyster-shells are lighter than sand in weight, and have similar characteristics on permeability and shear strength to sandy soils. The oyster-shell can be considered as highly crushable material but not much crushable with existing high loads. Based on the laboratory test results, it is highly fudged that the crushed oyster-shell can be a substitute of sand as SCP materials.

The Effects of Permeability Anisotropy on the Active Earth Pressure In Compacted Sand Backfill (뒷채움 모래의 다짐에 의한 투수이방성이 주동토압에 미치는 영향)

  • Jeong, Seong-Gyo;Sin, Jong-Bo;Jeon, Yong-Baek
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.27-36
    • /
    • 1986
  • To investigate the seepage effect on the compacted backfill of retaining walls, an expriment and an analytical study were carried out First, the expriment was performed with a two-way permeameter newly designed for the do- termination on the degree of permeability anisotropy of compacted soils. As a result, e-log(kz/ky) plot showed a linear relationship, where kz and ky were permeability coefficients for the normal and the parallel directions to the compaction. The degree of permeability anisotropy, kz/ky was 2 to 4 at Dr>90% for sands, regardless of the methods of compaction. The kz/ky of the fine sand was greater than that of the coarse sand. Second, the exprimental results were applied to the extention of Gray's theory for the investigation of the active thrust affected by the seepage of permeability anisotropy. The active thrust was decreased with the increase in the degree of permeability anisotropy, and it It.as a little effect on wall friction.

  • PDF

A Study on the Room Temperature Properties of Domestic Molding Sand depending on the Variations of Sand Grain Distribution and Grain Shape. (국산주물사(國産鑄物砂)의 입도분포(粒度分布)와 입형(粒形)에 따른 상온성질(常溫性質)에 관(關)한 연구(硏究))

  • Kang, Min-Jeon;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.4 no.1
    • /
    • pp.5-11
    • /
    • 1984
  • Green compressive strength, permeability, deformation, flowability, compactability and green hardness values at room temperature are dependable on the grain distribution and grain shape. The results obtained under constant moisture (4% for sand) and bentonite (8% for sand) were as follows; 1. With decreasing grain size, surface area of sand grain was increased. 2. With decreasing grain size, coefficient of angularity was increased. 3. As surface area increased from $8926.43cm^2$ to $21211.16cm^2$ , green compressive strength was increased from $210.93\;g/cm^2$ to $449.98\;g/cm^2$, hardness was increased from 76.7 to 82.3, but permeability was decreased from $411.7\;{\frac{\;cc\;{\cdot}\;cm\;}{atm\;{\cdot}\;cm^2\;{\cdot}\;min.}}$ to $113.7\;{\frac{\;cc\;{\cdot}\;mm\;}{atm\;{\cdot}\;cm^2\;{\cdot}\;min.}}$ 4. As surface area increased from $8926.43\;cm^2$ to $21211.16\;cm^2$, flowability was decreased from 82.3% to 80.8%, deformation was decreased from $67.1\;cm\;{\times}\;10^{-3}$ to $54.6\;cm\;{\times}\;10^{-3}$, but compactability was increased from 44.8% to 54.3%. 5. Room temperature properties of molding sand were affected by variation of surface area.

  • PDF

A Simple Method for Preserving Underground Water Resources in Volcanic Island (Jeju)

  • Hwang, Junhyuk;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.29-35
    • /
    • 2016
  • Being mostly made up of highly permeable basalt and volcanic ash soil, Jeju Island's lithosphere characterizes its streams to be dry, flowing only when precipitation is happening. Under this condition, this research was motivated to identify the need of conservation of underground water, which is taking up most of (84% of) Jeju's water usage, and made an attempt to reduce the permeability of stream beds so that it can replace underground water and be used instead. To this end, this study suggested a simple method to make dry streams to carry water all-year-round by reducing permeability of stream floor. The experiment of permeability was performed on the porous basalt and compared it with that of same basalt with volcanic ash soil and Jumunjin sand layer added on top. The results showed a dramatic decrease in permeability of water when both volcanic ash soil and Jumunjin sand is were layered on top of porous basalt. Despite being gained in a controlled environment with a simple test, this result may provide a realistic and effective method of preserving Jeju Island's underground water which ultimately is a method of resolving water related issues.

Characteristic of PVA-PMAA on the Fixation of Radioactively Contaminated Sand as a Result of a Nuclear Accident (PVA-PMAA에 의한 헥사고 오염모래의 고정화 특성)

  • Won, He-Jun;Ahn, Byung-Kil;Oh, Won-Jun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.18-24
    • /
    • 1995
  • Characteristics of poly(vinyl alcohol)-poly(methacrylic acid) system (PVA.-PMAA system) for fixation of radioactive contaminant on sand were studied. Dissociation of carboxyl group in PMAA was found to be suppressed by PVA Permeability of sand layer treated with PVA-PMAA solution is directly proportional to the PMAA concentration when the [PMAA] is below 0.082 M and the empirical proportional constant (k) is -8.95$\times$10 ̄$^4$cm$^{5}$ /mole. The change of permeability can be explained by the formation of an intermacromolecular complex between PVA and PMAA The polymer bridge formed on a sand surface combines sand yams more firmly. The PVA-PMAA system is more effective than the PVA system for the fixation of deposited condensational radionuclides.

  • PDF

Hydraulic behaviour of dune sand-bentonite mixtures under confining stress

  • Gueddouda, M.K.;Lamara, M.;Abou-bekr, N.;Taibi, S.
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.213-227
    • /
    • 2010
  • Compacted layers of sand-bentonite mixtures have been proposed and used in a variety of geotechnical projects as engineered barriers for the enhancement of impervious landfill liners, cores of zoned earth dams and radioactive waste repository systems. This paper presents a study on the valorization of local materiel such as dune sand from Laghouat region and mine bentonite intended for the realization of liner base layers in the conception of insulation barriers for hazardous waste centers. In the practice we try to get an economical mixture that satisfies the hydraulic and mechanical properties specified by regulation rules. The effect of the bentonite additions on the mixture is reflected by its capability of clogging the matrix pores upon swelling. In order to get an adequate dune sand-bentonite mixture, an investigation on hydraulic and mechanical behaviours is carried out in this study for different mixtures. Using oedometer test, the adequate bentonite addition to the mixture, which satisfies the conditions on permeability, is found to be around 12% to 15%. These results are also confirmed by direct measurement using triaxial cell.