• Title/Summary/Keyword: salt spray corrosion

Search Result 141, Processing Time 0.022 seconds

Evaluation of Nonchromated Thin Organic Coatings for Corrosion Inhibition of Electrogalvanized Steel

  • Park, Jong Myung;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.68-73
    • /
    • 2007
  • The toxicity of chromium that is used to impart corrosion resistance to galvanized steel created environmental and health-related concerns and generated a great deal of interest in developing chrome-free treatment coatings. In the present work, organic-inorganic composite coatings were used to coat electrogalvanized steel (EG) sheets for corrosion protection without degrading its weldability property. The new coatings composed of specially modified polyurethane dispersion hybridized with silicate and unique inorganic-organic inhibitors were developed during this work. It was found that about $1{\mu}m$ thickness of coating layer is secure enough in corrosion resistance of flat and formed part even after alkaline degreasing. Overall chemical resistances including fingerprint resistance and paint adhesion property were satisfied with the test specification of Sony technical standard of SS-00260-2002. Therefore, it is concluded that the newly developed chrome-free product can replace the conventional chromated product.

The Corrosion Behavior of Cold-Rolled 304 Stainless Steel In Salt Spray Environments (염분분사환경에서 냉연 304 스테인레스강의 부식거동)

  • Chiang, M.F.;Young, M.C.;Huang, J.Y.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.93-98
    • /
    • 2011
  • Saline corrosion is one of the major degradation mechanisms for stainless steel type 304 (SS304) dry storage cask during the spent fuel interim storage period. Slow strain rate test (SSRT) and neutral salt spray test (NSS) were performed at $85^{\circ}C$ and $200^{\circ}C$ with 0.5 wt% sodium chloride mist sprayed on the cold-rolled SS304 specimens of different degrees of reduction in this study. The weight changes of the NSS specimens tested at $85^{\circ}C$ for 2000 hours differed greatly from those at $200^{\circ}C$. The weight loss of NSS specimens was not significant at $85^{\circ}C$ but the weight gain decreased gradually with increasing the cold-rolled reduction. The yield strength (YS) and ultimate tensile stress (UTS) values obtained from the SSRT tests for lightly cold-rolled specimens in the salt spray environment at $85^{\circ}C$ and $200^{\circ}C$ are slightly lower than in air. But for those with 20% reductions, the specimen strengths were no longer changed by the saline corrosion. The preliminary results demonstrated that the quality and performance of cold-rolled SS304 is acceptable for fabrication of dry storage casks. However, more work on the corrosion behavior of cold-rolled stainless steel in the saline atmosphere is needed to better understand its long-term performance.

Evaluation of the Corrosion Resistance of Steel Coated with Zinc Using a Cr-free Coating Solution as a Function of Heat Treatment Time (Cr-free 코팅액에 의한 아연도금강판의 건조시간에 따른 내식특성)

  • Seo, Hyun-Soo;Moon, Hee-Joon;Kim, Jong-Soon;Ahn, Seok-Hwan;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.67-74
    • /
    • 2010
  • Chromate conversion coating is a coating technique used to passivate aluminum, zinc, cadmium, copper, silver, magnesium, tin, and their alloys to slow corrosion. The process uses various toxic chromium compounds, which may include hexavalent chromium. The industry is developing less toxic alternatives in order to comply with substance restriction legislation, such as RoHS. One alternative is to develop a Cr-free coating solution. In this study, eco-friendly, Cr-free solutions (urethane solution S-700, organic/inorganic solution with Si LRO-317) were used. Test specimens were dried in a drying oven at $190^{\circ}C$ for 3, 5, 7, and 9 minutes. Corrosion resistance was evaluated using a salt spray test for 72 hours. The results show that the optimum corrosion resistance was achieved at $190^{\circ}C$ for five minutes for EGI and three or five minutes for HDGI, respectively. The adhesive properties of the two types of coating solutions were superior regardless of drying time.

Fabrication of Chromium-based Double Layered Deposit (크롬계 이중도금층 제조 및 특성평가)

  • Park, Sang-Eon;Kim, Dong-Su;Kim, Man;Jang, Do-Yeon;Gwon, Sik-Cheol
    • 연구논문집
    • /
    • s.31
    • /
    • pp.127-133
    • /
    • 2001
  • In chromium electrodeposition, crack is inevitably accompanied by chromium layer. Behavior of crack formation and crack density were different from the plating conditions such as current density, temperature, waveform of applied current and so on. And cracks have an influence on the corrosion resistance of chromium deposit, because corrosion occurs through the network of cracks between deposit and substrate. Therefore, many researches have been achieved in order to remove the cracks in chromium deposit. Formation of double layers, Cr/Cr and Ni/Cr were investigated to increase corrosion resistance of chromium deposit in this study. As pretreatment prior to outer chromium coating, acid pickling and current control method were examined. Cracks in cross-section of each sample were observed with SEM and CASS(Copper modified acetic acid salt spray) test was performed to evaluate corrosion resistance. It was found that corrosion resistance of Cr/Cr and Ni/Cr double layers were superior to Cr or Ni single layer from the results of CASS test.

  • PDF

Critical Influence of Rivet Head Height on Corrosion Performance of CFRP/Aluminum Self-Piercing Riveted Joints

  • Karim, Md Abdul;Bae, Jin-Hee;Kam, Dong-Hyuck;Kim, Cheolhee;Park, Yeong-Do
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.92-101
    • /
    • 2019
  • This study investigates how rivet head height affects the corrosion performance of carbon fiber reinforced plastic (CFRP) to aluminum alloy self-piercing riveted joints. Specimens with two different head heights were prepared. A rivet head protruding out of the top CFRP laminate forms the proud head height while a rivet head penetrating into the top CFRP generates the flush head height. The salt spray test evaluated corrosion performance. The flush head joints suffered from severe corrosion on the rivet head. Thus, the tensile shear load of flush head joints was substantially reduced. Electrochemical corrosion tests investigated the corrosion mechanisms. The deeper indentation of the flush head height damaged the CFRP around the rivet head. The exposure of damaged fibers from the matrix increased the cathodic potential of local CFRP. The increased potential of damaged CFRP accelerated the galvanic corrosion of the rivet head. After the rivet head coating material corroded, a strong galvanic couple was formed between the rivet head base metal (boron steel) and the damaged CFRP, further accelerating the flush rivet head corrosion. The results of this study suggest that rivet head flushness should be avoided to enhance the corrosion performance of CFRP to aluminum alloy self-piercing riveted joints.

Effect of Fluoride Conversion Coating on the Corrosion Resistance and Adhesion of E-painted AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.124.2-124.2
    • /
    • 2016
  • Corrosion resistance and adhesion of electro-paint (E-paint) with fluoride conversion coating (FCC) on AZ31 Mg alloy were studied. Corrosion resistance and adhesion were studied as a function of FCC-treatment time and concentration of FCC-bath. Aqueous hydrogen fluoride (HF) solutions, with concentrations ranging from 0.5 M to 5 M, were used to form FCC on chemically polished AZ31 Mg alloy samples for six different times; 10, 30, 60, 90, 120, and 180s. The results from salt spray test (SST) showed that corrosion resistance of E-paint appeared to decrease with increasing FCC treatment times in low concentration FCC baths. The number of blisters formed on the FCC-treated samples increased with increasing FCC treatment time of more than 1 min in low concentration (0.5 M to 1 M) solutions. On the other hand, samples treated in the 5 M HF solution for 120s showed no delamination or blistering even after 1200h of SST.

  • PDF

A Study on Ferrite Stainless Steel Corrosion Resistance or Mechanical Characteristics of 434LD2 ABS Sensor Ring (센서 링이 내식성과 기계적 특성에 관한 연구)

  • 양현수;금영준;정풍기
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.1
    • /
    • pp.129-141
    • /
    • 2003
  • In this thesis, using the 400 series ferrite stainless steel such as 434LD$_2$ which are furter excellent then the existing ferric products in mechanical characteristics, and experiment has been conducted on corrosion resistance of sensor ring. The results are following. 1. The products before sintering are much more corrodible in the condition of spray test of salt water and ammonia than humidity and nitrogen condition. 2. 434LD$_2$ ferrite stainless steel has shown a good corrosion resistance without an addition surface treatment. thus the decreasing production process has been obtained. 3. As hardness value of $H_{RB}$ 80 and tensile test, 434LD$_2$ ferrite stainless steel with show a good endurance when it is combined to constant velocity joint (c/v joint), and has a good hardness properties endurable to sand and pebble impact.

환경시험에 의한 볼트의 도금두께 설계

  • Kim Jin Soo;Kim Gwang Sub
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.349-355
    • /
    • 2005
  • The bolts used for the electronic parts of a car a is the important parts which carry out an electric and physical performance. At the time of storage, transportation and use, Corrosion occurs in bolts under the influence of environmental factor. During the period exported especially overseas the chemical corrosion by the chlorine ion contained in the atmosphere occurs frequency. Then, The failure mechanism over corrosion is investigated and we consider to the design procedure of a environmental examination. We are going to select the proper plating thickness of bolts through a salt spray test, for investigating the corrosion resistance of bolts.

  • PDF

Identification on a Local Wall Thinning by Flow Acceleration Corrosion Inside Tee of Carbon Steel Pipe (탄소강 배관 티에서의 유동가속부식으로 인한 감육 현상 규명)

  • Kim, Kyung-Hoon;Lee, Sang-Kyu;Kang, Deok-Won
    • Journal of ILASS-Korea
    • /
    • v.16 no.2
    • /
    • pp.82-89
    • /
    • 2011
  • When pipe components made of carbon steel in nuclear, fossil, and industry plants are exposed to flowing fluid, wall thinning caused by FAC(flow accelerated corrosion) can be generated and eventually ruptured at the position of pressure boundary. The aim of this study is to identify the locations at which local wall thinning occurs and to determine the turbulence coefficient related to local wall thinning. Experiment and numerical analyses for the tee sections of down scaled piping components were performed and the results were compared. In particular, flow visualization experiment which was used alkali metallic salt was performed to find actual location of local wall thinning inside tee components. In order to determine the relationship between turbulence coefficients and local wall thinning, numerical analyses were performed for tee components in the main feedwater systems. The turbulence coefficients based on the numerical analyses were compared with the local wall thinning based on the measured data. From the comparison of the results, the vertical flow velocity component(Vr) flowing to the wall after separating in the wall due to the geometrical configuration and colliding with the wall directly at an angle of some degree was analogous to the configuration of local wall thinning.

A Study of Corrosion Resistance and Torque in Bolt Coated with Magni 565 (Magni 565 코팅 볼트의 내식성 및 토오크 특성에 대한 연구)

  • Kim, Sang-Soo;Kim, Moo-Gil;Jung, Byong-Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.195-202
    • /
    • 2007
  • Corrosion resistance and torque of M10 bolt coated with Magni 565 were investigated. Corrosion protection mechanism were also studied with the microstructure of coating film. The bolts with the optimum conditions showed around $10{\mu}m$ layer thickness, a great corrosion resistance in salt spray test and a proper torque in torque/tension test. But torque coefficient k increased with the number of bolting and clamping force of M10 bolt showed significantly lower than that of specified value 28.3kN. It was thought that the repeated bolting made the coating film peel off and powdery. The sample coated with optimum coating conditions showed more higher polarization resistance and corrosion potential than the specimens of top and base coat only. The base coating film was composed of lamellar zinc flakes, which provides a large sacrificial cathodic protection. Meanwhile, the top coating film was composed of organic aluminium pigments layer, which provides barrier protection to the corrosion circumstances.